23 research outputs found

    Proceedings of the NASA Conference on Space Telerobotics, volume 4

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    NASA Automated Rendezvous and Capture Review. A compilation of the abstracts

    Get PDF
    This document presents a compilation of abstracts of papers solicited for presentation at the NASA Automated Rendezvous and Capture Review held in Williamsburg, VA on November 19-21, 1991. Due to limitations on time and other considerations, not all abstracts could be presented during the review. The organizing committee determined however, that all abstracts merited availability to all participants and represented data and information reflecting state-of-the-art of this technology which should be captured in one document for future use and reference. The organizing committee appreciates the interest shown in the review and the response by the authors in submitting these abstracts

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Technology for large space systems: A bibliography with indexes (supplement 22)

    Get PDF
    This bibliography lists 1077 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to the researcher or manager engaged in the development of technologies related to large space systems. Subject areas include mission and program definition, design techniques, structural and thermal analysis, structural dynamics and control systems, electronics, advanced materials, assembly concepts, and propulsion

    Affordances And Control Of A Spine Morphology For Robotic Quadrupedal Locomotion

    Get PDF
    How does a robot\u27s body affect what it can do? This thesis explores the question with respect to a body morphology common to biology but rare in contemporary robotics: the presence of a bendable back. In this document, we introduce the Canid and Inu quadrupedal robots designed to test hypotheses related to the presence of a robotic sagittal-plane bending back (which we refer to as a ``spine morphology\u27\u27). The thesis then describes and quantifies several advantages afforded by this morphological design choice that can be evaluated against its added weight and complexity, and proposes control strategies to both deal with the increase in degrees-of-freedom from the spine morphology and to leverage an increase in agility to reactively navigate irregular terrain. Specifically, we show using the metric of ``specific agility\u27\u27 that a spine can provides a reservoir of elastic energy storage that can be rapidly converted to kinetic energy, that a spine can augment the effective workspace of the legs without diminishing their force generation capability, and that -- in cases of direct-drive or nearly direct-drive leg actuation -- the spine motors can contribute more work in stance than the same actuator weight used in the legs, but can do so without diminishing the platform\u27s proprioceptive capabilities. To put to use the agility provided by a suitably designed robotic platform, we introduce a formalism to approximate a set of transitional navigational tasks over irregular terrain such as leaping over a gap that lend itself to doubly reactive control synthesis. We also directly address the increased complexity introduced by the spine joint with a modular compositional control framework with nice stability properties that begins to offer insight into the role of spines for steady-state running. A central theme to both the reactive navigation and the modular control frameworks is that analytical tractability is achieved by approximating the modes driving the environmental interactions with constant-acceleration dynamics

    Space station systems: A bibliography with indexes (supplement 10)

    Get PDF
    This bibliography lists 1,422 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 04)

    Get PDF
    Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Automatic extraction of constraints in manipulation tasks for autonomy and interaction

    Get PDF
    Tasks routinely executed by humans involve sequences of actions performed with high dexterity and coordination. Fully specifying these actions such that a robot could replicate the task is often difficult. Furthermore the uncertainties introduced by the use of different tools or changing configurations demand the specification to be generic, while enhancing the important task aspects, i.e. the constraints. Therefore the first challenge of this thesis is inferring these constraints from repeated demonstrations. In addition humans explaining a task to another person rely on the person's ability to apprehend missing or implicit information. Therefore observations contain user-specific cues, alongside knowledge on performing the task. Thus our second challenge is correlating the task constraints with the user behavior for improving the robot's performance. We address these challenges using a Programming by Demonstration framework. In the first part of the thesis we describe an approach for decomposing demonstrations into actions and extracting task-space constraints as continuous features that apply throughout each action. The constraints consist of: (1) the reference frame for performing manipulation, (2) the variables of interest relative to this frame, allowing a decomposition in force and position control, and (3) a stiffness gain modulating the contribution of force and position. We then extend this approach to asymmetrical bimanual tasks by extracting features that enable arm coordination: the master--slave role that enables precedence, and the motion--motion or force--motion coordination that facilitates the physical interaction through an object. The set of constraints and the time-independent encoding of each action form a task prototype, used to execute the task. In the second part of the thesis we focus on discovering additional features implicit in the demonstrations with respect to two aspects of the teaching interactions: (1) characterizing the user performance and (2) improving the user behavior. For the first goal we assess the skill of the user and implicitly the quality of the demonstrations by using objective task--specific metrics, related directly to the constraints. We further analyze ways of making the user aware of the robot's state during teaching by providing task--related feedback. The feedback has a direct influence on both the teaching efficiency and the user's perception of the interaction. We evaluated our approaches on robotic experiments that encompass daily activities using two 7 degrees of freedom Kuka LWR robotic arms, and a 53 degrees of freedom iCub humanoid robot

    Technical accomplishments of the NASA Lewis Research Center, 1989

    Get PDF
    Topics addressed include: high-temperature composite materials; structural mechanics; fatigue life prediction for composite materials; internal computational fluid mechanics; instrumentation and controls; electronics; stirling engines; aeropropulsion and space propulsion programs, including a study of slush hydrogen; space power for use in the space station, in the Mars rover, and other applications; thermal management; plasma and radiation; cryogenic fluid management in space; microgravity physics; combustion in reduced gravity; test facilities and resources
    corecore