103 research outputs found

    Full-rotation singularity-safe workspace for kinematically redundant parallel robots

    Get PDF
    This paper introduces and computes a novel type of work-space for kinematically redundant parallel robots that defines the regionin which the end-effector can make full rotations without coming close tosingular configurations; it departs from the traditional full-rotation dex-terous workspace, which considers full rotations without encounteringsingularities but does not take into account the performance problemsresulting from closeness to these locations. Kinematically redundant ar-chitectures have the advantage of being able to be reconfigured withoutchanging the pose of the end-effector, thus being capable of avoidingsingularities and being suitable for applications where high dexterityis required. Knowing the workspace of these robots in which the end-effector is able to complete full, smooth rotations is a key design aspectto improve performance; however, since this singularity-safe workspaceis generally small, or even non-existent, in most parallel manipulators,its characterisation and calculation have not received attention in theliterature. The proposed workspace for kinematically redundant robotsis introduced using a planar parallel architecture as a case study; the for-mulation works by treating the manipulator as two halves, calculatingthe full-rotation workspace of the end-effector for each half whilst ensur-ing singularity conditions are not approached or met, and then findingthe intersection of both regions. The method is demonstrated ontwoexample robot instances, and a numerical analysis is also carried out asa comparison

    A method for extending planar axis-symmetric parallel manipulators to spatial mechanisms

    Full text link
    This paper investigates axis-symmetric parallel manipulators, composed of a central base column and an arm system able to rotate around this column. The arm system includes several actuated upper arms, each connected to a manipulated platform by one or more lower arm linkages. Such manipulators feature an extensive positional workspace in relation to the manipulator footprint and equal manipulator properties in all radial half-planes defined by the common rotation-axis of the upper arms. The similarities between planar manipulators exclusively employing 2-degrees-of-freedom (2-DOF) lower arm linkages and lower mobility spatial manipulators only utilising 5-DOF lower arm linkages are analysed. The 2-DOF linkages are composed of a link with a 1-DOF hinge on both ends whilst the 5-DOF linkages utilise 3-DOF spherical joints and 2-DOF universal joints. By employing a proposed linkage substitution scheme, it is shown how a wide range of spatial axis-symmetric parallel manipulators can be derived from a limited range of planar manipulators of the same type

    Error Modeling and Design Optimization of Parallel Manipulators

    Get PDF

    Synthèse cinématique d'un octopode parallèle sans surcontrainte avec conditions de singularité simples

    Get PDF
    Ce mémoire présente l'étude du lieu des singularités de type II pour un mécanisme parallèle cinématiquement redondant à (6+2) degrés de liberté dont l'architecture est préalablement donnée. Cette étude se concentre sur les conditions mathématiques telles que le déterminant de la matrice jacobienne s'annule pour toutes configurations dues à la mobilité interne du mécanisme permise par la redondance cinématique. Pour ce faire, la construction d'une matrice partageant les mêmes conditions de singularité que la matrice jacobienne du mécanisme est présentée. La réécriture du déterminant de cette matrice par une sommation de quatre sous-déterminants pondérée par les paramètres de mobilité interne du mécanisme mène à un système d'équations non linéaires à résoudre pour obtenir le lieu des singularités. Une méthode d'élimination de variables, le résultant des polynômes, est ensuite appliquée de manière récursive à ce système d'équations afin d'en extraire les conditions pouvant le résoudre. Les lieux de singularité sont ensuite analysés suivant deux cas de figure. Le premier se penche sur les configurations spécifiques du mécanisme où l'angle de torsion de la plateforme est nul, et le second se concentre sur le cas général, où cet angle de torsion n'est pas nécessairement nul. Dans le premier cas d'analyse, il est montré que les lieux de singularité se situent à l'extérieur de l'espace atteignable du mécanisme cinématiquement redondant. Dans le second cas d'analyse, il est montré que l'espace en orientation demeure quelque peu affecté par la présence de singularités, bien que leur localisation par des équations mathématiques analytiques simples soit possible. Finalement, une comparaison graphique des espaces atteignables en orientation entre le mécanisme cinématiquement redondant et le mécanisme non redondant standard est effectuée afin de visualiser l'impact de l'ajout de la redondance cinématique sur l'agrandissement de l'espace en orientation.This thesis presents the study of the type II singularity locus of a kinematically redundant(6+2) degree-of-freedom parallel mechanism whose architecture is prescribed. This studyfocuses on the mathematical conditions for which the determinant of the Jacobian matrixvanishes for all configurations of the internal mobility in the mechanism due to its kinematicredundancy. To do so, a matrix that captures the same conditions of singularity as the Jacobian matrix is presented. The expansion of the determinant of the aforementioned matrixinto a weighted sum of four sub-determinants whose weighting factors correspond to theinternal mobility parameters leads to a nonlinear system of equations whose solution yieldsthe locus of singularity. A method of elimination theory, the resultant of polynomials, isapplied afterwards on the system of equations in a recursive manner to extract the mathematical conditions corresponding to the solution. The loci of singularity are then analyzedfollowing two cases. The first case focuses on the specific configurations of the mechanismwhere the torsion angle of the platform is zero, whereas the second case takes into accountthe general configurations, i.e. the configurations in which the torsion angle is not necessarily zero. In the former case of analysis, it is shown that the loci of singularity lie outsideof the reachable orientational workspace of the kinematically redundant mechanism. In thelatter case of analysis, it is presented that the orientational workspace is still somewhat restrained by singularities, yet their localization by simple analytical mathematical equationsis possible. Finally, a graphical comparison of the orientational reachable workspace of thekinematically redundant mechanism and that of the standard non-redundant mechanism isperformed to visualize the impact of the kinematic redundancy on the enhancement of theorientational workspace

    Novel Design and Analysis of Parallel Robotic Mechanisms

    Get PDF
    A parallel manipulator has several limbs that connect and actuate an end effector from the base. The design of parallel manipulators usually follows the process of prescribed task, design evaluation, and optimization. This dissertation focuses on interference-free designs of dynamically balanced manipulators and deployable manipulators of various degrees of freedom (DOFs). 1) Dynamic balancing is an approach to reduce shaking loads in motion by including balancing components. The shaking loads could cause noise and vibration. The balancing components may cause link interference and take more actuation energy. The 2-DOF (2-RR)R or 3-DOF (2-RR)R planar manipulator, and 3-DOF 3-RRS spatial manipulator are designed interference-free and with structural adaptive features. The structural adaptions and motion planning are discussed for energy minimization. A balanced 3-DOF (2-RR)R and a balanced 3-DOF 3-RRS could be combined for balanced 6-DOF motion. 2) Deployable feature in design allows a structure to be folded. The research in deployable parallel structures of non-configurable platform is rare. This feature is demanded, for example the outdoor solar tracking stand has non-configurable platform and may need to lie-flat on floor at stormy weathers to protect the structure. The 3-DOF 3-PRS and 3-DOF 3-RPS are re-designed to have deployable feature. The 6-DOF 3-[(2-RR)UU] and 5-DOF PRPU/2-[(2-RR)UU] are designed for deployable feature in higher DOFs. Several novel methods are developed for rapid workspace evaluation, link interference detection and stiffness evaluation. The above robotic manipulators could be grouped as a robotic system that operates in a green way and works harmoniously with nature

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Type Synthesis and Performance Optimization of Parallel Manipulators

    Get PDF
    Parallel robots have been widely employed in industrial applications. There are still some challenging topics in the fundamental research, e.g., the primary problem mobility analysis has not been solved for about 150 years. A universal mobility equation for all kinds of parallel architectures has not been found. Another issue lies on the performance measurements for parallel manipulators. There are plenty of kinematic and dynamic performance indices. However, the various ranges and scales of these indicators make the optimal design considering multiple indices complicated. It is essential to search for a unified approach to normalize performance indicators. More dynamic performance measurement indicators should be raised to explore the dynamic features and complete the theory for parallel mechanisms. In this research, an improved mobility equation is designed to reveal the degrees of freedom for a special class of parallel robots. A novel methodology called the kinematic joint matrix is proposed. It possesses the mapping relations with parallel manipulators. A series of 2-6 degrees of freedom parallel architectures is denoted by the kinematic joint matrix. The theory of screw is employed to check the feasibility from several kinds of parallel structures. A special block diagram is introduced to distinguish various kinematic joint matrices. Since this family of parallel robots contains various motion characteristics, four parallel robots with distinct features are selected. Based on the kinematic models, three categories of singularities are explored. The operational and reachable workspaces of the pure-translational parallel robots are searched and the parametric analyses are reported. The linkage’s impacts for the reachable workspace of the mixed-motion parallel architectures are investigated. The novel performance level index is designed to unify the positive performance index and demonstrated the performance rank for any pose (position and orientation). The dexterity index is utilized as an example to verify the characteristics of the level index. The distributions and parametric analyses of two novel mass-related performances are studied. The dimension synthesis of a selected planar parallel robot is presented based on the non-dominated genetic algorithm II. The experiment results testify the correctness of the mobility and kinematic mathematical models of this mechanism

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Applications of fractional calculus in electrical and computer engineering

    Get PDF
    Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses a FC perspective in the study of the dynamics and control of several systems. This article illustrates several applications of fractional calculus in science and engineering. It has been recognized the advantageous use of this mathematical tool in the modeling and control of many dynamical systems. In this perspective, this paper investigates the use of FC in the fields of controller tuning, electrical systems, digital circuit synthesis, evolutionary computing, redundant robots, legged robots, robotic manipulators, nonlinear friction and financial modeling.N/
    • …
    corecore