435 research outputs found

    Dynamic analysis of parallel-link manipulators under the singularity-consistent formulation

    Get PDF
    科研費報告書収録論文(課題番号:08555062・基盤研究(A)(2)・H8~H10/研究代表者:内山, 勝/6自由度超高速パラレルロボットの試作研究

    Position-based kinematics for 7-DoF serial manipulators with global configuration control, joint limit and singularity avoidance

    Get PDF
    This paper presents a novel analytic method to uniquely solve inverse kinematics of 7 degrees-of-freedom manipulators while avoiding joint limits and singularities. Two auxiliary parameters are introduced to deal with the self-motion manifolds: the global configuration (GC), which specifies the branch of inverse kinematics solutions; and the arm angle (ψ) that parametrizes the elbow redundancy within the specified branch. The relations between the joint angles and the arm angle are derived, in order to map the joint limits and singularities to arm angle values. Then, intervals of feasible arm angles for the specified target pose and global configuration are determined, taking joint limits and singularities into account. A simple metric is proposed to compute the elbow position according to the feasible intervals. When the arm angle is determined, the joint angles can be uniquely calculated from the position-based inverse kinematics algorithm. The presented method does not exhibit the disadvantages inherent to the use of the Jacobian matrix and can be implemented in real-time control systems. This novel algorithm is the first position-based inverse kinematics algorithm to solve both global and local manifolds, using a redundancy resolution strategy to avoid singularities and joint limits.This work was partially supported by the NETT Project [FP7-PEOPLE-2011-ITN-289146]; and Foundation for Science and Technology, Portugal [grant number SFRH/BD/86499/2012].info:eu-repo/semantics/publishedVersio

    Efficient Geometric Linearization of Moving-Base Rigid Robot Dynamics

    Get PDF
    The linearization of the equations of motion of a robotics system about a given state-input trajectory, including a controlled equilibrium state, is a valuable tool for model-based planning, closed-loop control, gain tuning, and state estimation. Contrary to the case of fixed based manipulators with prismatic or rotary joints, the state space of moving-base robotic systems such as humanoids, quadruped robots, or aerial manipulators cannot be globally parametrized by a finite number of independent coordinates. This impossibility is a direct consequence of the fact that the state of these systems includes the system's global orientation, formally described as an element of the special orthogonal group SO(3). As a consequence, obtaining the linearization of the equations of motion for these systems is typically resolved, from a practical perspective, by locally parameterizing the system's attitude by means of, e.g., Euler or Cardan angles. This has the drawback, however, of introducing artificial parameterization singularities and extra derivative computations. In this contribution, we show that it is actually possible to define a notion of linearization that does not require the use of a local parameterization for the system's orientation, obtaining a mathematically elegant, recursive, and singularity-free linearization for moving-based robot systems. Recursiveness, in particular, is obtained by proposing a nontrivial modification of existing recursive algorithms to allow for computations of the geometric derivatives of the inverse dynamics and the inverse of the mass matrix of the robotic system. The correctness of the proposed algorithm is validated by means of a numerical comparison with the result obtained via geometric finite difference

    6自由度超高速パラレルロボットの試作研究

    Get PDF
    平成8年度-平成10年度科学研究費補助金(基盤研究(A)(2))研究成果報告書,課題番号.0855506

    On the Dynamic Properties of Flexible Parallel Manipulators in the Presence of Type 2 Singularities

    Get PDF
    International audienceIn the present paper, we expand information about the conditions for passing through Type 2 singular configurations of a parallel manipulator. It is shown that any parallel manipulator can cross the singular configurations via an optimal control permitting the favourable force distribution, i.e. the wrench applied on the end-effector by the legs and external efforts must be reciprocal to the twist along the direction of the uncontrollable motion. The previous studies have proposed the optimal control conditions for the manipulators with rigid links and flexible actuated joints. The different polynomial laws have been obtained and validated for each examined case. The present study considers the conditions for passing through Type 2 singular configurations for the parallel manipulators with flexible links. By computing the inverse dynamic model of a general flexible parallel robot, the necessary conditions for passing through Type 2 singular configurations are deduced. The suggested approach is illustrated by a 5R parallel manipulator with flexible elements and joints. It is shown that a 16 th order polynomial law is necessary for the optimal force generation. The obtained results are validated by numerical simulations carried out using the software ADAMS

    Whole-Body Impedance Control of Wheeled Humanoid Robots

    Full text link
    corecore