2,223 research outputs found

    Stress intensity factors computation for bending plates with extended finite element method

    Get PDF
    The modelization of bending plates with through-the-thickness cracks is investigated. We consider the Kirchhoff–Love plate model, which is valid for very thin plates. Reduced Hsieh–Clough–Tocher triangles and reduced Fraejis de Veubeke–Sanders quadrilaterals are used for the numerical discretization. We apply the eXtended Finite Element Method strategy: enrichment of the finite element space with the asymptotic bending singularities and with the discontinuity across the crack. The main point, addressed in this paper, is the numerical computation of stress intensity factors. For this, two strategies, direct estimate and J-integral, are described and tested. Some practical rules, dealing with the choice of some numerical parameters, are underlined

    A PDE based approach to multi-domain partitioning and quadrilateral meshing

    Get PDF
    International audienceIn this paper, we present an algorithm for partitioning any given 2d domain into regions suitable for quadrilateral meshing. It can deal with multi-domain geometries with ease, and is able to preserve the symmetry of the domain. Moreover, this method keeps the number of singularities at the junctions of the regions to a minimum. Each part of the domain, being four-sided, can then be meshed using a structured method. The partitioning stage is achieved by solving a PDE constrained problem based on the geometric properties of the domain boundaries

    On the equivalence between the cell-based smoothed finite element method and the virtual element method

    Get PDF
    We revisit the cell-based smoothed finite element method (SFEM) for quadrilateral elements and extend it to arbitrary polygons and polyhedrons in 2D and 3D, respectively. We highlight the similarity between the SFEM and the virtual element method (VEM). Based on the VEM, we propose a new stabilization approach to the SFEM when applied to arbitrary polygons and polyhedrons. The accuracy and the convergence properties of the SFEM are studied with a few benchmark problems in 2D and 3D linear elasticity. Later, the SFEM is combined with the scaled boundary finite element method to problems involving singularity within the framework of the linear elastic fracture mechanics in 2D

    Large-scale Geometric Data Decomposition, Processing and Structured Mesh Generation

    Get PDF
    Mesh generation is a fundamental and critical problem in geometric data modeling and processing. In most scientific and engineering tasks that involve numerical computations and simulations on 2D/3D regions or on curved geometric objects, discretizing or approximating the geometric data using a polygonal or polyhedral meshes is always the first step of the procedure. The quality of this tessellation often dictates the subsequent computation accuracy, efficiency, and numerical stability. When compared with unstructured meshes, the structured meshes are favored in many scientific/engineering tasks due to their good properties. However, generating high-quality structured mesh remains challenging, especially for complex or large-scale geometric data. In industrial Computer-aided Design/Engineering (CAD/CAE) pipelines, the geometry processing to create a desirable structural mesh of the complex model is the most costly step. This step is semi-manual, and often takes up to several weeks to finish. Several technical challenges remains unsolved in existing structured mesh generation techniques. This dissertation studies the effective generation of structural mesh on large and complex geometric data. We study a general geometric computation paradigm to solve this problem via model partitioning and divide-and-conquer. To apply effective divide-and-conquer, we study two key technical components: the shape decomposition in the divide stage, and the structured meshing in the conquer stage. We test our algorithm on vairous data set, the results demonstrate the efficiency and effectiveness of our framework. The comparisons also show our algorithm outperforms existing partitioning methods in final meshing quality. We also show our pipeline scales up efficiently on HPC environment

    Volume parametrization quantization for hexahedral meshing

    Get PDF

    Optimal multi-block mesh generation for CFD

    Get PDF
    An assessment of various automatic block topology generation techniques for creating structured meshes has been performed in the first part of the paper. The objective is to find out optimal blocking methods for generating meshes suitable for flow simulations. The comparison has been carried out using an adjoint based error analysis of the meshes generated by these block topologies. Different objective functions and numerical schemes have been used for this assessment. It is found that, in general, the medial axis based approaches provide optimal blocking and yields better accuracy in computing the functional of interest. This is because the medial axis based methods produce meshes which have better flow alignment specially in case of internal flows. In the second part of the paper, the adjoint based error indicator has been used to adapt the block topology in the regions of large error.Rolls Royce, plc TSB SILOET II TS/L00691X/
    corecore