1,967 research outputs found

    A Bayesian information criterion for singular models

    Full text link
    We consider approximate Bayesian model choice for model selection problems that involve models whose Fisher-information matrices may fail to be invertible along other competing submodels. Such singular models do not obey the regularity conditions underlying the derivation of Schwarz's Bayesian information criterion (BIC) and the penalty structure in BIC generally does not reflect the frequentist large-sample behavior of their marginal likelihood. While large-sample theory for the marginal likelihood of singular models has been developed recently, the resulting approximations depend on the true parameter value and lead to a paradox of circular reasoning. Guided by examples such as determining the number of components of mixture models, the number of factors in latent factor models or the rank in reduced-rank regression, we propose a resolution to this paradox and give a practical extension of BIC for singular model selection problems

    Equations of States in Statistical Learning for a Nonparametrizable and Regular Case

    Full text link
    Many learning machines that have hierarchical structure or hidden variables are now being used in information science, artificial intelligence, and bioinformatics. However, several learning machines used in such fields are not regular but singular statistical models, hence their generalization performance is still left unknown. To overcome these problems, in the previous papers, we proved new equations in statistical learning, by which we can estimate the Bayes generalization loss from the Bayes training loss and the functional variance, on the condition that the true distribution is a singularity contained in a learning machine. In this paper, we prove that the same equations hold even if a true distribution is not contained in a parametric model. Also we prove that, the proposed equations in a regular case are asymptotically equivalent to the Takeuchi information criterion. Therefore, the proposed equations are always applicable without any condition on the unknown true distribution

    Incoherent boundary conditions and metastates

    Get PDF
    In this contribution we discuss the role which incoherent boundary conditions can play in the study of phase transitions. This is a question of particular relevance for the analysis of disordered systems, and in particular of spin glasses. For the moment our mathematical results only apply to ferromagnetic models which have an exact symmetry between low-temperature phases. We give a survey of these results and discuss possibilities to extend them to some situations where many pure states can coexist. An idea of the proofs as well as the reformulation of our results in the language of Newman-Stein metastates are also presented.Comment: Published at http://dx.doi.org/10.1214/074921706000000176 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore