928 research outputs found

    Control of fluid flows and other systems governed by partial differential-algebraic equations

    No full text
    The motion of fluids, such as air or water, is central to many engineering systems of significant economic and environmental importance. Examples range from air/fuel mixing in combustion engines to turbulence induced noise and fatigue on aircraft. Recent advances in novel sensor/actuator technologies have raised the intriguing prospect of actively sensing and manipulating the motion of the fluid within these systems, making them ripe for feedback control, provided a suitable control model exists. Unfortunately, the models for many of these systems are described by nonlinear, partial differential-algebraic equations for which few, if any, controller synthesis techniques exist. In stark contrast, the majority of established control theory assumes plant models of finite (and typically small) state dimension, expressed as a linear system of ordinary differential equations. Therefore, this thesis explores the problem of how to apply the mainstream tools of control theory to the class of systems described by partial differential-algebraic equations, that are either linear, or for which a linear approximation is valid. The problems of control system design for infinite-dimensional and algebraically constrained systems are treated separately in this thesis. With respect to the former, a new method is presented that enables the computation of a bound on the n-gap between a discretisation of a spatially distributed plant, and the plant itself, by exploiting the convergence rate of the v-gap metric between low-order models of successively finer spatial resolution. This bound informs the design, on loworder models, of H[infinity] loop-shaping controllers that are guaranteed to robustly stabilise the actual plant. An example is presented on a one-dimensional heat equation. Controller/estimator synthesis is then discussed for finite-dimensional systems containing algebraic, as well as differential equations. In the case of fluid flows, algebraic constraints typically arise from incompressibility and the application of boundary conditions. A numerical algorithm is presented, suitable for the semi-discrete linearised Navier-Stokes equations, that decouples the differential and algebraic parts of the system, enabling application of standard control theory without the need for velocity-vorticity type methods. This algorithm is demonstrated firstly on a simple electrical circuit, and secondly on the highly non-trivial problem of flow-field estimation in the transient growth region of a flat-plate boundary layer, using only wall shear measurements. These separate strands are woven together in the penultimate chapter, where a transient energy controller is designed for a channel-flow system, using wall mounted sensors and actuators

    Modern control approaches for next-generation interferometric gravitational wave detectors

    Get PDF
    [no abstract

    Practical robustness measures in multivariable control system analysis

    Get PDF
    The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed

    Robust stability analysis of a dc/dc buck converter under multiple parametric uncertainties

    Get PDF
    Stability studies are a crucial part of the design of power electronic systems, especially for safety critical ap¬plications. Standard methods can guarantee stability under nominal conditions but do not take into account the multiple uncertainties that are inherent in the physical system or in the system model. These uncertainties, if unaccounted for, may lead to highly optimistic or even erroneous stability margins. The structured singular value-based method justifiably takes into account all possible uncertainties in the system. However, the application of the method to power electronic systems with multiple uncertainties is not widely discussed in the literature. This work presents practical approaches to applying the method in the robust stability analysis of such uncertain systems. Further, it reveals the significant impact of various types of parametric uncertainties on the reliability of stability assessments of power electronic systems. This is achieved by examining the robust stability margin of the dc/dc buck converter system, when it is subject to variations in system load, line resistance, operating temperature and uncertainties in the system model. The predictions are supported by time domain simulation and experimental results

    Optimised configuration of sensing elements for control and fault tolerance applied to an electro-magnetic suspension system

    Get PDF
    New technological advances and the requirements to increasingly abide by new safety laws in engineering design projects highly affects industrial products in areas such as automotive, aerospace and railway industries. The necessity arises to design reduced-cost hi-tech products with minimal complexity, optimal performance, effective parameter robustness properties, and high reliability with fault tolerance. In this context the control system design plays an important role and the impact is crucial relative to the level of cost efficiency of a product. Measurement of required information for the operation of the design control system in any product is a vital issue, and in such cases a number of sensors can be available to select from in order to achieve the desired system properties. However, for a complex engineering system a manual procedure to select the best sensor set subject to the desired system properties can be very complicated, time consuming or even impossible to achieve. This is more evident in the case of large number of sensors and the requirement to comply with optimum performance. The thesis describes a comprehensive study of sensor selection for control and fault tolerance with the particular application of an ElectroMagnetic Levitation system (being an unstable, nonlinear, safety-critical system with non-trivial control performance requirements). The particular aim of the presented work is to identify effective sensor selection frameworks subject to given system properties for controlling (with a level of fault tolerance) the MagLev suspension system. A particular objective of the work is to identify the minimum possible sensors that can be used to cover multiple sensor faults, while maintaining optimum performance with the remaining sensors. The tools employed combine modern control strategies and multiobjective constraint optimisation (for tuning purposes) methods. An important part of the work is the design and construction of a 25kg MagLev suspension to be used for experimental verification of the proposed sensor selection frameworks

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications
    corecore