20,975 research outputs found

    A Kam Theorem for Space-Multidimensional Hamiltonian PDE

    Get PDF
    We present an abstract KAM theorem, adapted to space-multidimensional hamiltonian PDEs with smoothing non-linearities. The main novelties of this theorem are that: ∙\bullet the integrable part of the hamiltonian may contain a hyperbolic part and as a consequence the constructed invariant tori may be unstable. ∙\bullet It applies to singular perturbation problem. In this paper we state the KAM-theorem and comment on it, give the main ingredients of the proof, and present three applications of the theorem .Comment: arXiv admin note: text overlap with arXiv:1502.0226

    Convergence and adiabatic elimination for a driven dissipative quantum harmonic oscillator

    Get PDF
    We prove that a harmonic oscillator driven by Lindblad dynamics where the typical drive and loss channels are two-photon processes instead of single-photon ones, converges to a protected subspace spanned by two coherent states of opposite amplitude. We then characterize the slow dynamics induced by a perturbative single-photon loss on this protected subspace, by performing adiabatic elimination in the Lindbladian dynamics.Comment: submitted to IEEE-CDC 201

    On average control generating families for singularly perturbed optimal control problems with long run average optimality criteria

    Full text link
    The paper aims at the development of tools for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems with long run average optimality criteria. The idea that we exploit is to first asymptotically approximate a given problem of optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional (ID) linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with a numerical example.Comment: 36 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1309.373

    A Kernel Perspective for Regularizing Deep Neural Networks

    Get PDF
    We propose a new point of view for regularizing deep neural networks by using the norm of a reproducing kernel Hilbert space (RKHS). Even though this norm cannot be computed, it admits upper and lower approximations leading to various practical strategies. Specifically, this perspective (i) provides a common umbrella for many existing regularization principles, including spectral norm and gradient penalties, or adversarial training, (ii) leads to new effective regularization penalties, and (iii) suggests hybrid strategies combining lower and upper bounds to get better approximations of the RKHS norm. We experimentally show this approach to be effective when learning on small datasets, or to obtain adversarially robust models.Comment: ICM

    Robust â„‹2 Performance: Guaranteeing Margins for LQG Regulators

    Get PDF
    This paper shows that ℋ2 (LQG) performance specifications can be combined with structured uncertainty in the system, yielding robustness analysis conditions of the same nature and computational complexity as the corresponding conditions for ℋ∞ performance. These conditions are convex feasibility tests in terms of Linear Matrix Inequalities, and can be proven to be necessary and sufficient under the same conditions as in the ℋ∞ case. With these results, the tools of robust control can be viewed as coming full circle to treat the problem where it all began: guaranteeing margins for LQG regulators

    Measure, Topology and Probabilistic Reasoning in Cosmology

    Get PDF
    I explain the difficulty of making various concepts of and relating to probability precise, rigorous and physically significant when attempting to apply them in reasoning about objects (e.g., spacetimes) living in infinite-dimensional spaces, working through many examples from cosmology. I focus on the relation of topological to measure-theoretic notions of and relating to probability, how they diverge in unpleasant ways in the infinite-dimensional case, and are difficult to work with on their own as well in that context. Even in cases where an appropriate family of spacetimes is finite-dimensional, however, and so admits a measure of the relevant sort, it is always the case that the family is not a compact topological space, and so does not admit a physically significant, well behaved probability measure. Problems of a different but still deeply troubling sort plague arguments about likelihood in that context, which I also discuss. I conclude that most standard forms of argument used in cosmology to estimate the likelihood of the occurrence of various properties or behaviors of spacetimes have serious mathematical, physical and conceptual problems.Comment: 26 page

    Singularity theory study of overdetermination in models for L-H transitions

    Full text link
    Two dynamical models that have been proposed to describe transitions between low and high confinement states (L-H transitions) in confined plasmas are analysed using singularity theory and stability theory. It is shown that the stationary-state bifurcation sets have qualitative properties identical to standard normal forms for the pitchfork and transcritical bifurcations. The analysis yields the codimension of the highest-order singularities, from which we find that the unperturbed systems are overdetermined bifurcation problems and derive appropriate universal unfoldings. Questions of mutual equivalence and the character of the state transitions are addressed.Comment: Latex (Revtex) source + 13 small postscript figures. Revised versio
    • …
    corecore