2,705 research outputs found

    Microelectrode array recordings from the ventral roots in chronically implanted cats

    Get PDF
    ventral spinal roots contain the axons of spinal motoneurons and provide the only location in the peripheral nervous system where recorded neural activity can be assured to be motor rather than sensory. This study demonstrates recordings of single unit activity from these ventral root axons using floating microelectrode arrays (FMAs). Ventral root recordings were characterized by examining single unit yield and signal-to-noise ratios (SNR) with 32-channel FMAs implanted chronically in the L6 and L7 spinal roots of nine cats. Single unit recordings were performed for implant periods of up to 12 weeks. Motor units were identified based on active discharge during locomotion and inactivity under anesthesia. Motor unit yield and SNR were calculated for each electrode, and results were grouped by electrode site size, which were varied systematically between 25 and 160μm to determine effects on signal quality. The unit yields and SNR did not differ significantly across this wide range of electrode sizes. Both SNR and yield decayed over time, but electrodes were able to record spikes with SNR >2 up to 12 weeks post-implant. These results demonstrate that it is feasible to record single unit activity from multiple isolated motor units with penetrating microelectrode arrays implanted chronically in the ventral spinal roots. This approach could be useful for creating a spinal nerve interface for advanced neural prostheses, and results of this study will be used to improve design of microelectrodes for chronic neural recording in the ventral spinal roots. © 2014 Debnath, Bauman, Fisher, Weber and Gaunt

    Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes

    Get PDF
    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable

    Active C4 electrodes for local field potential recording applications

    Get PDF
    Extracellular neural recording, with multi-electrode arrays (MEAs), is a powerful method used to study neural function at the network level. However, in a high density array, it can be costly and time consuming to integrate the active circuit with the expensive electrodes. In this paper, we present a 4 mm × 4 mm neural recording integrated circuit (IC) chip, utilizing IBM C4 bumps as recording electrodes, which enable a seamless active chip and electrode integration. The IC chip was designed and fabricated in a 0.13 μm BiCMOS process for both in vitro and in vivo applications. It has an input-referred noise of 4.6 μV rms for the bandwidth of 10 Hz to 10 kHz and a power dissipation of 11.25 mW at 2.5 V, or 43.9 μW per input channel. This prototype is scalable for implementing larger number and higher density electrode arrays. To validate the functionality of the chip, electrical testing results and acute in vivo recordings from a rat barrel cortex are presented.R01 NS072385 - NINDS NIH HHS; 1R01 NS072385 - NINDS NIH HH

    Neuroelectronic interfacing with cultured multielectrode arrays toward a cultured probe

    Get PDF
    Efficient and selective electrical stimulation and recording of neural activity in peripheral, spinal, or central pathways requires multielectrode arrays at micrometer scale. ¿Cultured probe¿ devices are being developed, i.e., cell-cultured planar multielectrode arrays (MEAs). They may enhance efficiency and selectivity because neural cells have been grown over and around each electrode site as electrode-specific local networks. If, after implantation, collateral sprouts branch from a motor fiber (ventral horn area) and if they can be guided and contacted to each ¿host¿ network, a very selective and efficient interface will result. Four basic aspects of the design and development of a cultured probe, coated with rat cortical or dorsal root ganglion neurons, are described. First, the importance of optimization of the cell-electrode contact is presented. It turns out that impedance spectroscopy, and detailed modeling of the electrode-cell interface, is a very helpful technique, which shows whether a cell is covering an electrode and how strong the sealing is. Second, the dielectrophoretic trapping method directs cells efficiently to desired spots on the substrate, and cells remain viable after the treatment. The number of cells trapped is dependent on the electric field parameters and the occurrence of a secondary force, a fluid flow (as a result of field-induced heating). It was found that the viability of trapped cortical cells was not influenced by the electric field. Third, cells must adhere to the surface of the substrate and form networks, which are locally confined, to one electrode site. For that, chemical modification of the substrate and electrode areas with various coatings, such as polyethyleneimine (PEI) and fluorocarbon monolayers promotes or inhibits adhesion of cells. Finally, it is shown how PEI patterning, by a stamping technique, successfully guides outgrowth of collaterals from a neonatal rat lumbar spinal cord explant, after six days in cultur

    Endoneural selective stimulating using wire-microelectrode arrays

    Get PDF
    In acute experiments eight 5- to 24-wire-microelectrode arrays were inserted into the common peroneal nerve of the rat, to investigate whether the electrodes could selectively stimulate motor units of the extensor digitorum longus (EDL) muscle. Twitch-force-recruitment curves were measured from the EDL for each array electrode. The curves were plotted on a double-logarithmic scale and parameterized by the low-force slope (which represents the power p in the power-law relationship of force F versus stimulus current I, or F~Ip) and the threshold current. The slopes and threshold currents measured with array electrodes did not differ significantly from those obtained with randomly inserted single wire-microelectrodes. This indicates that, although involving a more invasive insertion procedure, electrode arrays provide neural contacts with low-force recruitment properties similar to those of single wires. Array results revealed partial blocking of neural conduction, similar to that reported with microneurographic insertion with single needles. The efficiency of the array was defined as the fraction of array electrodes selectively contacting a motor unit and evoking the corresponding threshold force. Efficiency thus expresses the practical value of the used electrode array in terms of the total number of distinct threshold forces that can be stimulated by selecting the appropriate electrodes. The eight arrays were capable of evoking threshold forces selectively with an average efficiency of 0.81 (or 81%

    Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites

    Get PDF
    Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localization using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are... The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localization in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications

    Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex.

    Get PDF
    Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required
    corecore