456 research outputs found

    Multiple and single snapshot compressive beamforming

    Full text link
    For a sound field observed on a sensor array, compressive sensing (CS) reconstructs the direction-of-arrival (DOA) of multiple sources using a sparsity constraint. The DOA estimation is posed as an underdetermined problem by expressing the acoustic pressure at each sensor as a phase-lagged superposition of source amplitudes at all hypothetical DOAs. Regularizing with an â„“1\ell_1-norm constraint renders the problem solvable with convex optimization, and promoting sparsity gives high-resolution DOA maps. Here, the sparse source distribution is derived using maximum a posteriori (MAP) estimates for both single and multiple snapshots. CS does not require inversion of the data covariance matrix and thus works well even for a single snapshot where it gives higher resolution than conventional beamforming. For multiple snapshots, CS outperforms conventional high-resolution methods, even with coherent arrivals and at low signal-to-noise ratio. The superior resolution of CS is demonstrated with vertical array data from the SWellEx96 experiment for coherent multi-paths.Comment: In press Journal of Acoustical Society of Americ

    Direction of arrival estimation using robust complex Lasso

    Full text link
    The Lasso (Least Absolute Shrinkage and Selection Operator) has been a popular technique for simultaneous linear regression estimation and variable selection. In this paper, we propose a new novel approach for robust Lasso that follows the spirit of M-estimation. We define MM-Lasso estimates of regression and scale as solutions to generalized zero subgradient equations. Another unique feature of this paper is that we consider complex-valued measurements and regression parameters, which requires careful mathematical characterization of the problem. An explicit and efficient algorithm for computing the MM-Lasso solution is proposed that has comparable computational complexity as state-of-the-art algorithm for computing the Lasso solution. Usefulness of the MM-Lasso method is illustrated for direction-of-arrival (DoA) estimation with sensor arrays in a single snapshot case.Comment: Paper has appeared in the Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP'2016), Davos, Switzerland, April 10-15, 201

    Off-grid Direction of Arrival Estimation Using Sparse Bayesian Inference

    Full text link
    Direction of arrival (DOA) estimation is a classical problem in signal processing with many practical applications. Its research has recently been advanced owing to the development of methods based on sparse signal reconstruction. While these methods have shown advantages over conventional ones, there are still difficulties in practical situations where true DOAs are not on the discretized sampling grid. To deal with such an off-grid DOA estimation problem, this paper studies an off-grid model that takes into account effects of the off-grid DOAs and has a smaller modeling error. An iterative algorithm is developed based on the off-grid model from a Bayesian perspective while joint sparsity among different snapshots is exploited by assuming a Laplace prior for signals at all snapshots. The new approach applies to both single snapshot and multi-snapshot cases. Numerical simulations show that the proposed algorithm has improved accuracy in terms of mean squared estimation error. The algorithm can maintain high estimation accuracy even under a very coarse sampling grid.Comment: To appear in the IEEE Trans. Signal Processing. This is a revised, shortened version of version

    Multichannel sparse recovery of complex-valued signals using Huber's criterion

    Full text link
    In this paper, we generalize Huber's criterion to multichannel sparse recovery problem of complex-valued measurements where the objective is to find good recovery of jointly sparse unknown signal vectors from the given multiple measurement vectors which are different linear combinations of the same known elementary vectors. This requires careful characterization of robust complex-valued loss functions as well as Huber's criterion function for the multivariate sparse regression problem. We devise a greedy algorithm based on simultaneous normalized iterative hard thresholding (SNIHT) algorithm. Unlike the conventional SNIHT method, our algorithm, referred to as HUB-SNIHT, is robust under heavy-tailed non-Gaussian noise conditions, yet has a negligible performance loss compared to SNIHT under Gaussian noise. Usefulness of the method is illustrated in source localization application with sensor arrays.Comment: To appear in CoSeRa'15 (Pisa, Italy, June 16-19, 2015). arXiv admin note: text overlap with arXiv:1502.0244
    • …
    corecore