23 research outputs found

    PVSNet: Palm Vein Authentication Siamese Network Trained using Triplet Loss and Adaptive Hard Mining by Learning Enforced Domain Specific Features

    Full text link
    Designing an end-to-end deep learning network to match the biometric features with limited training samples is an extremely challenging task. To address this problem, we propose a new way to design an end-to-end deep CNN framework i.e., PVSNet that works in two major steps: first, an encoder-decoder network is used to learn generative domain-specific features followed by a Siamese network in which convolutional layers are pre-trained in an unsupervised fashion as an autoencoder. The proposed model is trained via triplet loss function that is adjusted for learning feature embeddings in a way that minimizes the distance between embedding-pairs from the same subject and maximizes the distance with those from different subjects, with a margin. In particular, a triplet Siamese matching network using an adaptive margin based hard negative mining has been suggested. The hyper-parameters associated with the training strategy, like the adaptive margin, have been tuned to make the learning more effective on biometric datasets. In extensive experimentation, the proposed network outperforms most of the existing deep learning solutions on three type of typical vein datasets which clearly demonstrates the effectiveness of our proposed method.Comment: Accepted in 5th IEEE International Conference on Identity, Security and Behavior Analysis (ISBA), 2019, Hyderabad, Indi

    Identification and Security Implications of Biometrics

    Get PDF
    The usage of biometrics has become more frequent over the past couple of decades, notably due to technological advancements. Evolving technology in the field of biometrics has also led to increased accuracy of associated software, which have provided the opportunity to use a multitude of different human characteristics for identification and/or verification purposes. The current study assessed the usage of biometrics in casinos, hospitals, and law enforcement agencies using a survey methodology. Results indicated that privacy concerns related to the use of biometrics may not be as prevalent as indicated in the literature. Additionally, results indicated that the utilization of biometrics has led to increased accuracy in identification and verification processes, led to enhanced security, and would be highly recommended to other institutions. Information obtained from the literature notes the racial bias in facial recognition technologies due to algorithmic development based solely upon features of Caucasian individuals. Efforts need to be made to create facial recognition algorithms that are more racially and ethnically diverse

    Pathway to Future Symbiotic Creativity

    Full text link
    This report presents a comprehensive view of our vision on the development path of the human-machine symbiotic art creation. We propose a classification of the creative system with a hierarchy of 5 classes, showing the pathway of creativity evolving from a mimic-human artist (Turing Artists) to a Machine artist in its own right. We begin with an overview of the limitations of the Turing Artists then focus on the top two-level systems, Machine Artists, emphasizing machine-human communication in art creation. In art creation, it is necessary for machines to understand humans' mental states, including desires, appreciation, and emotions, humans also need to understand machines' creative capabilities and limitations. The rapid development of immersive environment and further evolution into the new concept of metaverse enable symbiotic art creation through unprecedented flexibility of bi-directional communication between artists and art manifestation environments. By examining the latest sensor and XR technologies, we illustrate the novel way for art data collection to constitute the base of a new form of human-machine bidirectional communication and understanding in art creation. Based on such communication and understanding mechanisms, we propose a novel framework for building future Machine artists, which comes with the philosophy that a human-compatible AI system should be based on the "human-in-the-loop" principle rather than the traditional "end-to-end" dogma. By proposing a new form of inverse reinforcement learning model, we outline the platform design of machine artists, demonstrate its functions and showcase some examples of technologies we have developed. We also provide a systematic exposition of the ecosystem for AI-based symbiotic art form and community with an economic model built on NFT technology. Ethical issues for the development of machine artists are also discussed

    Proceedings of the 2021 Symposium on Information Theory and Signal Processing in the Benelux, May 20-21, TU Eindhoven

    Get PDF

    Identification through Finger Bone Structure Biometrics

    Get PDF

    Finger Vein Verification with a Convolutional Auto-encoder

    Get PDF

    A PROBABILISTIC APPROACH TO THE CONSTRUCTION OF A MULTIMODAL AFFECT SPACE

    Get PDF
    Understanding affective signals from others is crucial for both human-human and human-agent interaction. The automatic analysis of emotion is by and large addressed as a pattern recognition problem which grounds in early psychological theories of emotion. Suitable features are first extracted and then used as input to classification (discrete emotion recognition) or regression (continuous affect detection). In this thesis, differently from many computational models in the literature, we draw on a simulationist approach to the analysis of facially displayed emotions - e.g., in the course of a face-to-face interaction between an expresser and an observer. At the heart of such perspective lies the enactment of the perceived emotion in the observer. We propose a probabilistic framework based on a deep latent representation of a continuous affect space, which can be exploited for both the estimation and the enactment of affective states in a multimodal space. Namely, we consider the observed facial expression together with physiological activations driven by internal autonomic activity. The rationale behind the approach lies in the large body of evidence from affective neuroscience showing that when we observe emotional facial expressions, we react with congruent facial mimicry. Further, in more complex situations, affect understanding is likely to rely on a comprehensive representation grounding the reconstruction of the state of the body associated with the displayed emotion. We show that our approach can address such problems in a unified and principled perspective, thus avoiding ad hoc heuristics while minimising learning efforts. Moreover, our model improves the inferred belief through the adoption of an inner loop of measurements and predictions within the central affect state-space, that realise the dynamics of the affect enactment. Results so far achieved have been obtained by adopting two publicly available multimodal corpora

    Electroencephalographic Responses to Frictional Stimuli: Measurement Setup and Processing Pipeline

    Get PDF
    Tactility is a key sense in the human interaction with the environment. The understanding of tactile perception has become an exciting area in industrial, medical and scienti c research with an emphasis on the development of new haptic technologies. Surprisingly, the quanti cation of tactile perception has, compared to other senses, only recently become a eld of scienti c investigation. The overall goal of this emerging scienti c discipline is an understanding of the causal chain from the contact of the skin with materials to the brain dynamics representing recognition of and emotional reaction to the materials. Each link in this chain depends on individual and environmental factors ranging from the in uence of humidity on contact formation to the role of attention for the perception of touch. This thesis reports on the research of neural correlates to the frictional stimulation of the human ngertip. Event-related electroencephalographic potentials (ERPs) upon the change in ngertip friction are measured and studied, when pins of a programmable Braille-display were brought into skin contact. In order to contribute to the understanding of the causal chain mentioned above, this work combines two research areas which are usually not connected to each other, namely tribology and neuroscience. The goal of the study is to evaluate contributions of friction to the process of haptic perception. Key contributions of this thesis are: 1) Development of a setup to simultaneously record physical forces and ERPs upon tactile stimulation. 2) Implementation of a dedicated signal processing pipeline for the statistical analysis of ERP -amplitudes, -latencies and -instantaneous phases. 3) Interpretation of skin friction data and extraction of neural correlates with respect to varying friction intensities. The tactile stimulation of the ngertip upon raising and lowering of di erent lines of Braille-pins (one, three and ve) caused pronounced N50 and P100 components in the event-related ERPsequences, which is in line with the current literature. Friction between the ngertip and the Braille-system exhibited a characteristic temporal development which is attributed to viscoelastic skin relaxation. Although the force stimuli varied by a factor of two between the di erent Braillepatterns, no signi cant di erences were observed between the amplitudes and latencies of ERPs after standard across-trial averaging. Thus, for the rst time a phase measure for estimating singletrial interactions of somatosensory potentials is proposed. Results show that instantaneous phase coherency is evoked by friction, and that higher friction induces stronger and more time-localized phase coherencyDie Taktilität ist ein zentraler Sinn in der Interaktion mit unserer Umwelt. Das Bestreben, fundierte Erkenntnisse hinsichtlich der taktilenWahrnehmung zu gewinnen erhält groÿen Zuspruch in der industriellen, medizinischen und wissenschaftlichen Forschung, meist mit einem Fokus auf der Entwicklung von haptischen Technologien. Erstaunlicherweise ist jedoch die wissenschaftliche Quanti zierung der taktilen Wahrnehmung, verglichen mit anderen Sinnesmodalitäten, erst seit kurzem ein sich entwickelnder Forschungsbereich. Fokus dieser Disziplin ist es, die kognitive und emotionale Reaktion nach physischem Kontakt mit Materialien zu beschreiben, und die kausale Wirkungskette von der Berührung bis zur Reaktion zu verstehen. Dabei unterliegen die einzelnen Faktoren dieser Kette sowohl individuellen als auch externen Ein üssen, welche von der Luftfeuchtigkeit während des Kontaktes bis hin zur Rolle der Aufmerksamkeit für die Wahrnehmung reichen. Die vorliegende Arbeit beschäftigt sich mit der Untersuchung von neuronalen Korrelaten nach Reibungsstimulation des menschlichen Fingers. Dazu wurden Reibungsänderungen, welche durch den Kontakt der menschlichen Fingerspitze mit schaltbaren Stiften eines Braille-Display erzeugt wurden, untersucht und die entsprechenden neuronalen Korrelate aufgezeichnet. Um zu dem Verst ändnis der oben erwähnten Wirkungskette beizutragen, werden Ansätze aus zwei für gewöhnlich nicht zusammenhängenden Forschungsbereichen, nämlich der Tribologie und der Neurowissenschaft, kombiniert. Folgende Beiträge sind Hauptbestandteile dieser Arbeit: 1) Realisierung einer Messumgebung zur simultanen Ableitung von Kräften und ereigniskorrelierten Potentialen nach taktiler Stimulation der Fingerspitze. 2) Aufbau einer speziellen Signalverarbeitungskette zur statistischen Analyse von stimulationsabh ängigen EEG -Amplituden, -Latenzen und -instantanen Phasen. 3) Interpretation der erhobenen Reibungsdaten und Extraktion neuronaler Korrelate hinsichtlich variierender Stimulationsintensitäten. Unsere Resultate zeigen, dass die taktile Stimulation der Fingerspitze nach Anheben und Senken von Braille-Stiften zu signi kanten N50 und P100 Komponenten in den ereigniskorrelierten Potentialen führt, im Einklang mit der aktuellen Literatur. Die Reibung zwischen der Fingerspitze und dem Braille-System zeigte einen charakteristischen Signalverlauf, welcher auf viskoelastische Hautrelaxation zurückzuführen ist. Trotz der um einen Faktor zwei verschiedenen Intensit ätsunterschiede zwischen den Stimulationsmustern zeigten sich keine signi kanten Unterschiede zwischen den einfach gemittelten Amplituden der evozierten Potentialen. Erstmalig wurde ein Phasen-Maÿ zur Identi zierung von Unterschieden zwischen somatosensorischen "single-trial" Interaktionen angewandt. Diese Phasenanalyse zeigte, im Gegensatz zur Amplituden- und Latenzanalyse, deutlichere und signi kantere Unterschiede zwischen den Stimulationsparadigmen. Es wird gefolgert, dass Kohärenz zwischen den Momentanphasen durch Reibungsereignisse herbeigef ührt wird und dass durch stärkere Reibung diese Kohärenz, im zeitlichen Verlauf, stärker und lokalisierter wird

    Machine Learning for Biomedical Application

    Get PDF
    Biomedicine is a multidisciplinary branch of medical science that consists of many scientific disciplines, e.g., biology, biotechnology, bioinformatics, and genetics; moreover, it covers various medical specialties. In recent years, this field of science has developed rapidly. This means that a large amount of data has been generated, due to (among other reasons) the processing, analysis, and recognition of a wide range of biomedical signals and images obtained through increasingly advanced medical imaging devices. The analysis of these data requires the use of advanced IT methods, which include those related to the use of artificial intelligence, and in particular machine learning. It is a summary of the Special Issue “Machine Learning for Biomedical Application”, briefly outlining selected applications of machine learning in the processing, analysis, and recognition of biomedical data, mostly regarding biosignals and medical images
    corecore