49 research outputs found

    Distributed Nested Rollout Policy for Same Game

    Get PDF
    Nested Rollout Policy Adaptation (NRPA) is a Monte Carlo search heuristic for puzzles and other optimization problems. It achieves state-of-the-art performance on several games including SameGame. In this paper, we design several parallel and distributed NRPA-based search techniques, and we provide a number of experimental insights about their execution. Finally, we use our best implementation to discover 15 better scores for 20 standard SameGame boards

    Monte-Carlo tree search enhancements for one-player and two-player domains

    Get PDF

    Selective search in games of different complexity

    Get PDF

    Knowledge-based fast evolutionary MCTS for general video game playing

    Get PDF
    General Video Game Playing is a game AI domain in which the usage of game-dependent domain knowledge is very limited or even non existent. This imposes obvious difficulties when seeking to create agents able to play sets of different games. Taken more broadly, this issue can be used as an introduction to the field of General Artificial Intelligence. This paper explores the performance of a vanilla Monte Carlo Tree Search algorithm, and analyzes the main difficulties encountered when tackling this kind of scenarios. Modifications are proposed to overcome these issues, strengthening the algorithm's ability to gather and discover knowledge, and taking advantage of past experiences. Results show that the performance of the algorithm is significantly improved, although there remain unresolved problems that require further research. The framework employed in this research is publicly available and will be used in the General Video Game Playing competition at the IEEE Conference on Computational Intelligence and Games in 2014

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    Finding Differential Paths in ARX Ciphers through Nested Monte-Carlo Search

    Get PDF
    We propose the adaptation of Nested Monte-Carlo Search algorithm for finding differential trails in the class of ARX ciphers. The practical application of the algorithm is demonstrated on round-reduced variants of block ciphers from the SPECK family. More specifically, we report the best differential trails,up to 9 rounds, for SPECK32
    corecore