9,615 research outputs found

    Beyond Moore's technologies: operation principles of a superconductor alternative

    Full text link
    The predictions of Moore's law are considered by experts to be valid until 2020 giving rise to "post-Moore's" technologies afterwards. Energy efficiency is one of the major challenges in high-performance computing that should be answered. Superconductor digital technology is a promising post-Moore's alternative for the development of supercomputers. In this paper, we consider operation principles of an energy-efficient superconductor logic and memory circuits with a short retrospective review of their evolution. We analyze their shortcomings in respect to computer circuits design. Possible ways of further research are outlined.Comment: OPEN ACCES

    Transport of Spin Qubits with Donor Chains under Realistic Experimental Conditions

    Get PDF
    The ability to transport quantum information across some distance can facilitate the design and operation of a quantum processor. One-dimensional spin chains provide a compact platform to realize scalable spin transport for a solid-state quantum computer. Here, we model odd-sized donor chains in silicon under a range of experimental non-idealities, including variability of donor position within the chain. We show that the tolerance against donor placement inaccuracies is greatly improved by operating the spin chain in a mode where the electrons are confined at the Si-SiO2_2 interface. We then estimate the required timescales and exchange couplings, and the level of noise that can be tolerated to achieve high fidelity transport. We also propose a protocol to calibrate and initialize the chain, thereby providing a complete guideline for realizing a functional donor chain and utilizing it for spin transport.Comment: 19 pages, 12 figure

    Adiabatic quantum computation with Cooper pairs

    Get PDF
    We propose a new variant of the controlled-NOT quantum logic gate based on adiabatic level-crossing dynamics of the q-bits. The gate has a natural implementation in terms of the Cooper pair transport in arrays of small Josephson tunnel junctions. An important advantage of the adiabatic approach is that the gate dynamics is insensitive to the unavoidable spread of junction parameters.Comment: 18 pages, 3 figures not supplied by autho

    Manifestation of a nonclassical Berry phase of an electromagnetic field in atomic Ramsey interference

    Full text link
    The Berry phase acquired by an electromagnetic field undergoing an adiabatic and cyclic evolution in phase space is a purely quantum-mechanical effect of the field. However, this phase is usually accompanied by a dynamical contribution and cannot be manifested in any light-beam interference experiment because it is independent of the field state. We here show that such a phase can be produced using an atom coupled to a quantized field and driven by a slowly changing classical field, and it is manifested in atomic Ramsey interference oscillations. We also show how this effect may be applied to one-step implementation of multiqubit geometric phase gates, which is impossible by previous geometric methods. The effects of dissipation and fluctuations in the parameters of the pump field on the Berry phase and visibility of the Ramsey interference fringes are analyzed
    • …
    corecore