8,843 research outputs found

    Mechanism design for decentralized online machine scheduling

    Get PDF
    Traditional optimization models assume a central decision maker who optimizes a global system performance measure. However, problem data is often distributed among several agents, and agents take autonomous decisions. This gives incentives for strategic behavior of agents, possibly leading to sub-optimal system performance. Furthermore, in dynamic environments, machines are locally dispersed and administratively independent. Examples are found both in business and engineering applications. We investigate such issues for a parallel machine scheduling model where jobs arrive online over time. Instead of centrally assigning jobs to machines, each machine implements a local sequencing rule and jobs decide for machines themselves. In this context, we introduce the concept of a myopic best response equilibrium, a concept weaker than the classical dominant strategy equilibrium, but appropriate for online problems. Our main result is a polynomial time, online mechanism that |assuming rational behavior of jobs| results in an equilibrium schedule that is 3.281-competitive with respect to the maximal social welfare. This is only lightly worse than state-of-the-art algorithms with central coordination

    Production/maintenance cooperative scheduling using multi-agents and fuzzy logic

    Get PDF
    Within companies, production is directly concerned with the manufacturing schedule, but other services like sales, maintenance, purchasing or workforce management should also have an influence on this schedule. These services often have together a hierarchical relationship, i.e. the leading function (most of the time sales or production) generates constraints defining the framework within which the other functions have to satisfy their own objectives. We show how the multi-agent paradigm, often used in scheduling for its ability to distribute decision-making, can also provide a framework for making several functions cooperate in the schedule performance. Production and maintenance have been chosen as an example: having common resources (the machines), their activities are actually often conflicting. We show how to use a fuzzy logic in order to model the temporal degrees of freedom of the two functions, and show that this approach may allow one to obtain a schedule that provides a better compromise between the satisfaction of the respective objectives of the two functions

    AN AGENT-BASED COOPERATIVE MECHANISM FOR INTEGRATED PRODUCTION AND TRANSPORTATION PLANNING

    Get PDF
    This paper presents a decentralized cooperative economic scheduling mechanism for a supply chain environment. For this purpose, we design autonomous agents that minimize the production or transportation costs and outsourcing costs incurred by the external execution of a task. The decentralized cooperative scheduling approach comprises two parts: the individual optimization an agent\u27s local schedule and the cooperative contract optimization, either by outsourcing the task or by (re-)contracting the release time and due time with the contract partners aiming to maximize their total profits. A negotiation mechanism based on trust accounts is employed to protect the agents against systematic exploitation by their partners

    Games and Mechanism Design in Machine Scheduling – An Introduction

    Get PDF
    In this paper, we survey different models, techniques, and some recent results to tackle machine scheduling problems within a distributed setting. In traditional optimization, a central authority is asked to solve a (computationally hard) optimization problem. In contrast, in distributed settings there are several agents, possibly equipped with private information that is not publicly known, and these agents need to interact in order to derive a solution to the problem. Usually the agents have their individual preferences, which induces them to behave strategically in order to manipulate the resulting solution. Nevertheless, one is often interested in the global performance of such systems. The analysis of such distributed settings requires techniques from classical Optimization, Game Theory, and Economic Theory. The paper therefore briefly introduces the most important of the underlying concepts, and gives a selection of typical research questions and recent results, focussing on applications to machine scheduling problems. This includes the study of the so-called price of anarchy for settings where the agents do not possess private information, as well as the design and analysis of (truthful) mechanisms in settings where the agents do possess private information.computer science applications;

    Scheduling problems with two competing agents

    Get PDF
    We consider the scheduling problems arising when two agents, each with a set of nonpreemptive jobs, compete to perform their respective jobs on a common processing resource. Each agent wants to minimize a certain objective function, which depends on the completion times of its jobs only. The objective functions we consider in this paper are maximum of regular functions (associated with each job), number of late jobs, and total weighted completion times. We obtain different scenarios, depending on the objective function of each agent, and on the structure of the processing system (single machine or shop). For each scenario, we address the complexity of various problems, namely, finding the optimal solution for one agent with a constraint on the other agent's cost function, finding single nondominated schedules (i.e., such that a better schedule for one of the two agents necessarily results in a worse schedule for the other agent), and generating all nondominated schedules

    Theoretical and Computational Research in Various Scheduling Models

    Get PDF
    Nine manuscripts were published in this Special Issue on “Theoretical and Computational Research in Various Scheduling Models, 2021” of the MDPI Mathematics journal, covering a wide range of topics connected to the theory and applications of various scheduling models and their extensions/generalizations. These topics include a road network maintenance project, cost reduction of the subcontracted resources, a variant of the relocation problem, a network of activities with generally distributed durations through a Markov chain, idea on how to improve the return loading rate problem by integrating the sub-tour reversal approach with the method of the theory of constraints, an extended solution method for optimizing the bi-objective no-idle permutation flowshop scheduling problem, the burn-in (B/I) procedure, the Pareto-scheduling problem with two competing agents, and three preemptive Pareto-scheduling problems with two competing agents, among others. We hope that the book will be of interest to those working in the area of various scheduling problems and provide a bridge to facilitate the interaction between researchers and practitioners in scheduling questions. Although discrete mathematics is a common method to solve scheduling problems, the further development of this method is limited due to the lack of general principles, which poses a major challenge in this research field

    Modeling and Analysis of Scheduling Problems Containing Renewable Energy Decisions

    Get PDF
    With globally increasing energy demands, world citizens are facing one of society\u27s most critical issues: protecting the environment. To reduce the emission of greenhouse gases (GHG), which are by-products of conventional energy resources, people are reducing the consumption of oil, gas, and coal collectively. In the meanwhile, interest in renewable energy resources has grown in recent years. Renewable generators can be installed both on the power grid side and end-use customer side of power systems. Energy management in power systems with multiple microgrids containing renewable energy resources has been a focus of industry and researchers as of late. Further, on-site renewable energy provides great opportunities for manufacturing plants to reduce energy costs when faced with time-varying electricity prices. To efficiently utilize on-site renewable energy generation, production schedules and energy supply decisions need to be coordinated. As renewable energy resources like solar and wind energy typically fluctuate with weather variations, the inherent stochastic nature of renewable energy resources makes the decision making of utilizing renewable generation complex. In this dissertation, we study a power system with one main grid (arbiter) and multiple microgrids (agents). The microgrids (MGs) are equipped to control their local generation and demand in the presence of uncertain renewable generation and heterogeneous energy management settings. We propose an extension to the classical two-stage stochastic programming model to capture these interactions by modeling the arbiter\u27s problem as the first-stage master problem and the agent decision problems as second-stage subproblems. To tackle this problem formulation, we propose a sequential sampling-based optimization algorithm that does not require a priori knowledge of probability distribution functions or selection of samples for renewable generation. The subproblems capture the details of different energy management settings employed at the agent MGs to control heating, ventilation and air conditioning systems; home appliances; industrial production; plug-in electrical vehicles; and storage devices. Computational experiments conducted on the US western interconnect (WECC-240) data set illustrate that the proposed algorithm is scalable and our solutions are statistically verifiable. Our results also show that the proposed framework can be used as a systematic tool to gauge (a) the impact of energy management settings in efficiently utilizing renewable generation and (b) the role of flexible demands in reducing system costs. Next, we present a two-stage, multi-objective stochastic program for flow shops with sequence-dependent setups in order to meet production schedules while managing energy costs. The first stage provides optimal schedules to minimize the total completion time, while the second stage makes energy supply decisions to minimize energy costs under a time-of-use electricity pricing scheme. Power demand for production is met by on-site renewable generation, supply from the main grid, and an energy storage system. An ε-constraint algorithm integrated with an L-shaped method is proposed to analyze the problem. Sets of Pareto optimal solutions are provided for decision-makers and our results show that the energy cost of setup operations is relatively high such that it cannot be ignored. Further, using solar or wind energy can save significant energy costs with solar energy being the more viable option of the two for reducing costs. Finally, we extend the flow shop scheduling problem to a job shop environment under hour-ahead real-time electricity pricing schemes. The objectives of interest are to minimize total weighted completion time and energy costs simultaneously. Besides renewable generation, hour-ahead real-time electricity pricing is another source of uncertainty in this study as electricity prices are released to customers only hours in advance of consumption. A mathematical model is presented and an ε-constraint algorithm is used to tackle the bi-objective problem. Further, to improve computational efficiency and generate solutions in a practically acceptable amount of time, a hybrid multi-objective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is developed. Five methods are developed to calculate chromosome fitness values. Computational tests show that both mathematical modeling and our proposed algorithm are comparable, while our algorithm produces solutions much quicker. Using a single method (rather than five) to generate schedules can further reduce computational time without significantly degrading solution quality
    corecore