27,659 research outputs found

    Scheduling Parallel Jobs with Linear Speedup

    Get PDF
    We consider a scheduling problem where a set of jobs is distributed over parallel machines. The processing time of any job is dependent on the usage of a scarce renewable resource, e.g., personnel. An amount of k units of that resource can be allocated to the jobs at any time, and the more of that resource is allocated to a job, the smaller its processing time. The dependence of processing times on the amount of resources is linear for any job. The objective is to find a resource allocation and a schedule that minimizes the makespan. Utilizing an integer quadratic programming relaxation, we show how to obtain a (3+e)-approximation algorithm for that problem, for any e>0. This generalizes and improves previous results, respectively. Our approach relies on a fully polynomial time approximation scheme to solve the quadratic programming relaxation. This result is interesting in itself, because the underlying quadratic program is NP-hard to solve in general. We also briefly discuss variants of the problem and derive lower bounds.operations research and management science;

    Machine Scheduling with Resource Dependent Processing Times

    Get PDF
    We consider several parallel machine scheduling settings with the objective to minimize the schedule makespan. The most general of these settings is unrelated parallel machine scheduling. We assume that, in addition to its machine dependence, the processing time of any job is dependent on the usage of a scarce renewable resource. A given amount of that resource, e.g. workers, can be distributed over the jobs in process at any time, and the more of that resource is allocated to a job, the smaller is its processing time. This model generalizes classical machine scheduling problems, adding a time-resource tradeoff. It is also a natural variant of a generalized assignment problem studied previously by Shmoys and Tardos. On the basis of integer programming formulations for relaxations of the respective problems, we use LP rounding techniques to allocate resources to jobs, and to assign jobs to machines. Combined with Graham''s list scheduling, we thus prove the existence of constant factor approximation algorithms. Our performance guarantee is 6.83 for the most general case of unrelated parallel machine scheduling. We improve this bound for two special cases, namely to 5.83 whenever the jobs are assigned to machines beforehand, and to (5+e), e>0, whenever the processing times do not depend on the machine. Moreover, we discuss tightness of the relaxations, and derive inapproximability results.operations research and management science;

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    The complexity of generating robust resource-constrained baseline schedules.

    Get PDF
    Robust scheduling aims at the construction of a schedule that is protected against uncertain events. A stable schedule is a robust schedule that will change little when variations in the input parameters arise. Robustness can also be achieved by making the schedule makespan insensitive to variability. In this paper, we describe models for the generation of stable and insensitive baseline schedules for resource-constrained scheduling problems and present results on their complexity status. We start from a project scheduling viewpoint and derive results on machine scheduling sub-problems.Complexity; Information; Product scheduling; Robustness; sensitivity; stability;

    Minimisation of energy consumption variance for multi-process manufacturing lines through genetic algorithm manipulation of production schedule

    Get PDF
    Typical manufacturing scheduling algorithms do not consider the energy consumption of each job, or its variance, when they generate a production schedule. This can become problematic for manufacturers when local infrastructure has limited energy distribution capabilities. In this paper, a genetic algorithm based schedule modification algorithm is presented. By referencing energy consumption models for each job, adjustments are made to the original schedule so that it produces a minimal variance in the total energy consumption in a multi-process manufacturing production line, all while operating within the constraints of the manufacturing line and individual processes. Empirical results show a significant reduction in energy consumption variance can be achieved on schedules containing multiple concurrent jobs
    corecore