74 research outputs found

    Controllable Processing Times in Project and Production Management: Analysing the Trade-Off between Processing Times and the Amount of Resources

    Get PDF
    The amount of resources assigned to a task highly influences its processing time. Traditionally, different functions have been used in the literature in order to map the processing time of the task with the amount of resources assigned to the task. Obviously, this relation depends on several factors such as the type of resource and/or decision problem under study. Although in the literature there are hundreds of papers using these relations in their models or methods, most of them do not justify the motivation for choosing a specific relation over another one. In some cases, even wrong justifications are given and, hence, infeasible or nonappropriated relations have been applied for the different problems, as we will show in this paper. Thus, our paper intends to fill this gap establishing the conditions where each relation can be applied by analysing the relations between the processing time of a task and the amount of resources assigned to that task commonly employed in the production and project management literature

    Intelligent shop scheduling for semiconductor manufacturing

    Get PDF
    Semiconductor market sales have expanded massively to more than 200 billion dollars annually accompanied by increased pressure on the manufacturers to provide higher quality products at lower cost to remain competitive. Scheduling of semiconductor manufacturing is one of the keys to increasing productivity, however the complexity of manufacturing high capacity semiconductor devices and the cost considerations mean that it is impossible to experiment within the facility. There is an immense need for effective decision support models, characterizing and analyzing the manufacturing process, allowing the effect of changes in the production environment to be predicted in order to increase utilization and enhance system performance. Although many simulation models have been developed within semiconductor manufacturing very little research on the simulation of the photolithography process has been reported even though semiconductor manufacturers have recognized that the scheduling of photolithography is one of the most important and challenging tasks due to complex nature of the process. Traditional scheduling techniques and existing approaches show some benefits for solving small and medium sized, straightforward scheduling problems. However, they have had limited success in solving complex scheduling problems with stochastic elements in an economic timeframe. This thesis presents a new methodology combining advanced solution approaches such as simulation, artificial intelligence, system modeling and Taguchi methods, to schedule a photolithography toolset. A new structured approach was developed to effectively support building the simulation models. A single tool and complete toolset model were developed using this approach and shown to have less than 4% deviation from actual production values. The use of an intelligent scheduling agent for the toolset model shows an average of 15% improvement in simulated throughput time and is currently in use for scheduling the photolithography toolset in a manufacturing plant
    • …
    corecore