29 research outputs found

    Connectionist-Symbolic Machine Intelligence using Cellular Automata based Reservoir-Hyperdimensional Computing

    Full text link
    We introduce a novel framework of reservoir computing, that is capable of both connectionist machine intelligence and symbolic computation. Cellular automaton is used as the reservoir of dynamical systems. Input is randomly projected onto the initial conditions of automaton cells and nonlinear computation is performed on the input via application of a rule in the automaton for a period of time. The evolution of the automaton creates a space-time volume of the automaton state space, and it is used as the reservoir. The proposed framework is capable of long short-term memory and it requires orders of magnitude less computation compared to Echo State Networks. We prove that cellular automaton reservoir holds a distributed representation of attribute statistics, which provides a more effective computation than local representation. It is possible to estimate the kernel for linear cellular automata via metric learning, that enables a much more efficient distance computation in support vector machine framework. Also, binary reservoir feature vectors can be combined using Boolean operations as in hyperdimensional computing, paving a direct way for concept building and symbolic processing.Comment: Corrected Typos. Responded some comments on section 8. Added appendix for details. Recurrent architecture emphasize

    Identifying Social Signals from Human Body Movements for Intelligent Technologies

    Get PDF
    Numerous Human-Computer Interaction (HCI) contexts require the identification of human internal states such as emotions, intentions, and states such as confusion and task engagement. Recognition of these states allows for artificial agents and interactive systems to provide appropriate responses to their human interaction partner. Whilst numerous solutions have been developed, many of these have been designed to classify internal states in a binary fashion, i.e. stating whether or not an internal state is present. One of the potential drawbacks of these approaches is that they provide a restricted, reductionist view of the internal states being experienced by a human user. As a result, an interactive agent which makes response decisions based on such a binary recognition system would be restricted in terms of the flexibility and appropriateness of its responses. Thus, in many settings, internal state recognition systems would benefit from being able to recognize multiple different ‘intensities’ of an internal state. However, for most classical machine learning approaches, this requires that a recognition system be trained on examples from every intensity (e.g. high, medium and low intensity task engagement). Obtaining such a training data-set can be both time- and resource-intensive. This project set out to explore whether this data requirement could be reduced whilst still providing an artificial recognition system able to provide multiple classification labels. To this end, this project first identified a set of internal states that could be recognized from human behaviour information available in a pre-existing data set. These explorations revealed that states relating to task engagement could be identified, by human observers, from human movement and posture information. A second set of studies was then dedicated to developing and testing different approaches to classifying three intensities of task engagement (high, intermediate and low) after training only on examples from the high and low task engagement data sets. The result of these studies was the development of an approach which incorporated the recently developed Legendre Memory Units, and was shown to produce an output which could be used to distinguish between all three task engagement intensities after being trained on only examples of high and low intensity task engagement. Thus this project presents the foundation work for internal state recognition systems which require less data whilst providing more classification labels

    Gaining Insight into Determinants of Physical Activity using Bayesian Network Learning

    Get PDF
    Contains fulltext : 228326pre.pdf (preprint version ) (Open Access) Contains fulltext : 228326pub.pdf (publisher's version ) (Open Access)BNAIC/BeneLearn 202

    Privacy-preserving continual learning methods for medical image classification: a comparative analysis

    Get PDF
    BackgroundThe implementation of deep learning models for medical image classification poses significant challenges, including gradual performance degradation and limited adaptability to new diseases. However, frequent retraining of models is unfeasible and raises concerns about healthcare privacy due to the retention of prior patient data. To address these issues, this study investigated privacy-preserving continual learning methods as an alternative solution.MethodsWe evaluated twelve privacy-preserving non-storage continual learning algorithms based deep learning models for classifying retinal diseases from public optical coherence tomography (OCT) images, in a class-incremental learning scenario. The OCT dataset comprises 108,309 OCT images. Its classes include normal (47.21%), drusen (7.96%), choroidal neovascularization (CNV) (34.35%), and diabetic macular edema (DME) (10.48%). Each class consisted of 250 testing images. For continuous training, the first task involved CNV and normal classes, the second task focused on DME class, and the third task included drusen class. All selected algorithms were further experimented with different training sequence combinations. The final model's average class accuracy was measured. The performance of the joint model obtained through retraining and the original finetune model without continual learning algorithms were compared. Additionally, a publicly available medical dataset for colon cancer detection based on histology slides was selected as a proof of concept, while the CIFAR10 dataset was included as the continual learning benchmark.ResultsAmong the continual learning algorithms, Brain-inspired-replay (BIR) outperformed the others in the continual learning-based classification of retinal diseases from OCT images, achieving an accuracy of 62.00% (95% confidence interval: 59.36-64.64%), with consistent top performance observed in different training sequences. For colon cancer histology classification, Efficient Feature Transformations (EFT) attained the highest accuracy of 66.82% (95% confidence interval: 64.23-69.42%). In comparison, the joint model achieved accuracies of 90.76% and 89.28%, respectively. The finetune model demonstrated catastrophic forgetting in both datasets.ConclusionAlthough the joint retraining model exhibited superior performance, continual learning holds promise in mitigating catastrophic forgetting and facilitating continual model updates while preserving privacy in healthcare deep learning models. Thus, it presents a highly promising solution for the long-term clinical deployment of such models

    Continual Learning of Natural Language Processing Tasks: A Survey

    Full text link
    Continual learning (CL) is an emerging learning paradigm that aims to emulate the human capability of learning and accumulating knowledge continually without forgetting the previously learned knowledge and also transferring the knowledge to new tasks to learn them better. This survey presents a comprehensive review of the recent progress of CL in the NLP field. It covers (1) all CL settings with a taxonomy of existing techniques. Besides dealing with forgetting, it also focuses on (2) knowledge transfer, which is of particular importance to NLP. Both (1) and (2) are not mentioned in the existing survey. Finally, a list of future directions is also discussed

    ADVERSARY AWARE CONTINUAL LEARNING

    Get PDF
    Continual learning approaches are useful as they help the model to learn new information (classes) sequentially, while also retaining the previously acquired information (classes). However, these approaches are adversary agnostic, i.e., they do not consider the possibility of malicious attacks. In this dissertation, we have demonstrated that continual learning approaches are extremely vulnerable to the adversarial backdoor attacks, where an intelligent adversary can introduce small amount of misinformation to the model in the form of imperceptible backdoor pattern during training to cause deliberate forgetting of a specific class at test time. We then propose a novel defensive framework to counter such an insidious attack where, we use the attacker’s primary strength – hiding the backdoor pattern by making it imperceptible to humans – against it and propose to learn a perceptible (stronger) pattern (also during the training) that can overpower the attacker’s imperceptible (weaker) pattern. We demonstrate the effectiveness of the proposed defensive mechanism through various commonly used replay-based (both generative and exact replay-based) continual learning algorithms using CIFAR-10, CIFAR-100, and MNIST benchmark datasets. Most noteworthy, we show that our proposed defensive framework considerably improves the robustness of continual learning algorithms with ZERO knowledge of the attacker’s target task, attacker’s target class, shape, size, and location of the attacker’s pattern. The proposed defensive framework also does not depend on the underlying continual learning algorithm. We term our proposed defensive framework as Adversary Aware Continual Learning (AACL)

    Classification of emotion categories based on functional connectivity patterns of the human brain

    Get PDF
    Neurophysiological and psychological models posit that emotions depend on connections across wide-spread corticolimbic circuits. While previous studies using pattern recognition on neuroimaging data have shown differences between various discrete emotions in brain activity patterns, less is known about the differences in functional connectivity. Thus, we employed multivariate pattern analysis on functional magnetic resonance imaging data (i) to develop a pipeline for applying pattern recognition in functional connectivity data, and (ii) to test whether connectivity patterns differ across emotion categories. Six emotions (anger, fear, disgust, happiness, sadness, and surprise) and a neutral state were induced in 16 participants using one-minute-long emotional narratives with natural prosody while brain activity was measured with functional magnetic resonance imaging (fMRI). We computed emotion-wise connectivity matrices both for whole-brain connections and for 10 previously defined functionally connected brain subnetworks and trained an across-participant classifier to categorize the emotional states based on whole-brain data and for each subnetwork separately. The whole-brain classifier performed above chance level with all emotions except sadness, suggesting that different emotions are characterized by differences in large-scale connectivity patterns. When focusing on the connectivity within the 10 subnetworks, classification was successful within the default mode system and for all emotions. We thus show preliminary evidence for consistently different sustained functional connectivity patterns for instances of emotion categories particularly within the default mode system
    corecore