690 research outputs found

    Inhibition of proton pumping in membrane reconstituted bovine heart cytochrome c oxidase by zinc binding at the inner matrix side

    Get PDF
    AbstractA study is presented on the effect of zinc binding at the matrix side, on the proton pump of purified liposome reconstituted bovine heart cytochrome c oxidase (COV). Internally trapped Zn2+ resulted in 50% decoupling of the proton pump at level flow. Analysis of the pH dependence of inhibition by internal Zn2+ of proton release in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase indicates that Zn2+ suppresses two of the four proton pumping steps in the cycle, those taking place when the 2 OH− produced in the reduction of O2 at the binuclear center are protonated to 2 H2O. This decoupling effect could be associated with Zn2+ induced conformational alteration of an acid/base cluster linked to heme a3

    Single electron reduction of ‘slow’ and ‘fast’ cytochrome-c oxidase

    Get PDF
    AbstractEvidence is presented that single electron reduction is sufficient for rapid electron transfer (k>20 s−1 at pH 8.0 in 0.43 M potassium EDTA) between haem a/CuA and the binuclear centre in ‘fast’ oxidase, whereas in ‘slow’ oxidase intramolecular electron transfer is slow even when both CuA and haem a are reduced (k⋍2 s−1). However, while a single electron can equilibrate rapidly between CuA, haem a and CuB in ‘fast’ oxidase, it seems that equilibration with haem a3 is relatively slow (k⋍2 s−1). Electron transfer between cytochrome c and CuA/haem a is similar for both types of enzyme (k=2.4×105 M−1·s−1)

    Oxygen Photoreduction in Cyanobacteria

    Get PDF
    Cyanobacteria are well-known for their role in the global production of O2 via photosynthetic water oxidation. However, with the use of light energy, cyanobacteria can also reduce O2. In my thesis work, I have investigated the impact of O2 photoreduction on protection of the photosynthetic apparatus as well as the N2-fixing machinery. Photosynthetic light reactions produce intermediate radicals and reduced electron carriers, which can easily react with O2 to generate various reactive oxygen species. To avoid prolonged reduction of photosynthetic components, cyanobacteria use “electron valves” that dissipate excess electrons from the photosynthetic electron transfer chain in a harmless way. In Synechocystis sp. PCC 6803, flavodiiron proteins Flv1 and Flv3 comprise a powerful electron sink redirecting electrons from the acceptor side of Photosystem I to O2 and reducing it directly to water. In this work, I demonstrate that upon Ci-depletion Flv1/3 can dissipate up to 60% of the electrons delivered from Photosystem II. O2 photoreduction by Flv1/3 was shown to be vital for cyanobacteria in natural aquatic environments and deletion of Flv1/3 was lethal for both Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120 under fluctuating light conditions. The lethal phenotype observed in the absence of Flv1/3 results from oxidative damage to Photosystem I, which appeared to be a primary target of reactive oxygen species produced upon sudden increases in light intensity. Importantly, cyanobacteria also possess other O2 photoreduction pathways which can protect the photosynthetic apparatus. This study demonstrates that respiratory terminal oxidases are also capable of initiating O2 photoreduction in mutant cells lacking the Flv1/3 proteins and grown under fluctuating light. Photoreduction of O2 by Rubisco was also shown in Ci-depleted cells of the mutants lacking Flv1/3, and thus provided the first evidence for active photorespiratory gas-exchange in cyanobacteria. Nevertheless, and despite the existence of other O2 photoreduction pathways, the Flv1/3 route appears to be the most robust and rapid system of photoprotection. Several groups of cyanobacteria are capable of N2 fixation. Filamentous heterocystous N2- fixing species, such as Anabaena sp. PCC 7120, are able to differentiate specialised cells called heterocysts for this purpose. In contrast to vegetative cells which perform oxygenic photosynthesis, heterocysts maintain a microoxic environment for the proper function of the nitrogenase enzyme, which is extremely sensitive to O2. The genome of Anabaena sp. PCC 7120 harbors two copies of genes encoding Flv1 and Flv3 proteins, designated as “A” and “B” forms. In this thesis work, I demonstrate that Flv1A and Flv3A are expressed only in the vegetative cells of filaments, whilst Flv1B and Flv3B are localized exclusively in heterocysts. I further revealed that the Flv3B protein is most responsible for the photoreduction of O2 in heterocysts, and that this reaction plays an important role in protection of the N2-fixing machinery and thus, the provision of filaments with fixed nitrogen. The function of the Flv1B protein remains to be elucidated; however the involvement of this protein in electron transfer reactions is feasible. Evidence provided in this thesis indicates the presence of a great diversity of O2 photoreduction reactions in cyanobacterial cells. These reactions appear to be crucial for the photoprotection of both photosynthesis and N2 fixation processes in an oxygenic environment.Syanobakteerien tiedetÀÀn osallistuvan maailmanlaajuiseen hapentuotantoon fotosynteesissĂ€ tapahtuvan veden hajotuksen, eli kemiallisesti veden hapetuksen, kautta. Valoenergian avulla syanobakteerit myös pelkistĂ€vĂ€t ilmakehĂ€n happea, jolloin lopputuotteena syntyy vettĂ€. VĂ€itöskirjatyössĂ€ni olen tutkinut hapen valopelkistyksen molekyylimekanismeja ja roolia syanobakteerien fotosynteesi- ja typensidontakoneistojen suojelemisessa. Fotosynteesin valoreaktioissa syntyy vĂ€lituotteina monenlaisia radikaaleja ja pelkistyneitĂ€ elektroninsiirtĂ€jiĂ€, jotka reagoivat herkĂ€sti hapen kanssa synnyttĂ€en erilaisia reaktiivisia happilajeja. VĂ€lttÀÀkseen fotosynteesikoneiston pitkittynyttĂ€ pelkistymistilaa, syanobakteerit kĂ€yttĂ€vĂ€t ”elektroniventtiilejĂ€â€, joiden kautta ne purkavat fotosynteesikoneistoon kertyneet ylimÀÀrĂ€iset elektronit vaarattomasti. Synechocystis sp. PCC 6803:n flavodiironproteiinit Flv1 ja Flv3 muodostavat tehokkaan elektroninielun ohjaamalla elektroneja valoreaktio I:n pelkistĂ€vĂ€ltĂ€ puolelta suoraan hapelle pelkistĂ€en sen vedeksi. TĂ€ssĂ€ työssĂ€ osoitan, ettĂ€ kun syanobakteereja kasvatetaan matalassa hiilidioksidipitoisuudessa (tasapainossa ympĂ€röivĂ€n ilman kanssa), Flv1/3 proteiinipari pystyy kuluttamaan jopa 60% valoreaktio II:n veden hajotuksesta johdetuista elektroneista. Flv1/3-vĂ€litteisen hapen valopelkistyksen nĂ€ytettiin olevan elintĂ€rkeÀÀ syanobakteereille luonnollisessa vesiympĂ€ristössĂ€ ja Flv1/3 proteiinien poistaminen johti sekĂ€ Synechocystis sp. PCC 6803:n ettĂ€ Anabaena sp. PCC 7120:n kuolemaan vaihtelevan valon olosuhteissa. Flv1/3:n puuttumisen aiheuttaman letaalin ilmiasun osoitettiin johtuvan valoreaktio I:n foto-oksidatiivisesta vaurioitumisesta: Ă€killinen valointensiteetin nousu johtaa reaktiivisten happilajien muodostumiseen, ja valoreaktio I nĂ€ytti olevan nĂ€iden happilajien pÀÀasiallinen kohde. Flv1/3:n lisĂ€ksi syanobakteereilla on myös muita hapen valopelkistĂ€misreittejĂ€, jotka voivat toimia fotosynteesikoneiston suojaamisessa. TĂ€mĂ€ tutkimus osoittaa, ettĂ€ hengitysreitin terminaaliset oksidaasit kykenevĂ€t myös hapen valopelkistykseen vaihtelevan valon olosuhteissa mutanttisoluissa, joilta puuttuvat Flv1 ja 3 proteiinit. Matalassa hiilidioksidissa nĂ€issĂ€ mutanttisoluissa voitiin mitata myös Rubisco-vĂ€litteistĂ€ hapen valopelkistymistĂ€, osoittautuen ensimmĂ€iseksi raportiksi syanobakteerien aktiivisesta fotorespiratorisesta kaasujen vaihdosta. Huolimatta muista hapen valopelkistysreiteistĂ€, Flv1/3 vĂ€litteinen reitti nĂ€yttĂ€isi olevan kuitenkin vahvin ja nopein fotosynteesikoneiston suojausmekanismi. Monet syanobakteeriryhmĂ€t kykenevĂ€t ilmakehĂ€n typen sidontaan. Rihmamaiset typpeĂ€ sitovat syanobakteerit, kuten Anabaena sp. PCC 7120, kykenevĂ€t muodostamaan typen sidontaan erilaistuneita soluja: heterokystejĂ€. Toisin kuin yhteyttĂ€vissĂ€ vegetatiivisissa soluissa, heterokysteissĂ€ yllĂ€pidetÀÀn lĂ€hes hapetonta ympĂ€ristöÀ, joka vaaditaan happiherkĂ€n nitrogenaasientsyymin toimintaan. Anabaena sp. PCC 7120:n genomissa on Flv1 ettĂ€ Flv3 proteiineja koodaavista geeneistĂ€ kaksi kopiota, niin kutsutut ”A” ja ”B” muodot. VĂ€itöskirjatyössĂ€ni osoitan, ettĂ€ Flv1A ja Flv3A ilmentyvĂ€t vain syanobakteeririhmojen vegetatiivisissa soluissa, kun taas Flv1B ja Flv3B sijaitsevat ainoastaan heterokysteissĂ€. LisĂ€ksi nĂ€ytĂ€n, ettĂ€ Flv3B on pÀÀasiassa vastuussa hapen valopelkistyksestĂ€ heterokysteissĂ€ ja ettĂ€ tĂ€mĂ€ reaktio on tĂ€rkeĂ€ typpeĂ€ sitovan koneiston suojaamisessa ja siten takaa rihmojen typen saannin. Flv1B proteiinin tarkka rooli on vielĂ€ selvittĂ€mĂ€ttĂ€, mutta on mahdollista, ettĂ€ se osallistuu elektroninsiirtoreaktioihin. TĂ€ssĂ€ vĂ€itöskirjassa esitetty todistusaineisto viittaa siihen, ettĂ€ syanobakteereilla on useita hapen valopelkistysreittejĂ€. NĂ€mĂ€ reaktiot ja reitit ovat vĂ€lttĂ€mĂ€ttömiĂ€ sekĂ€ fotosynteettisen ettĂ€ typpeĂ€ sitovan koneiston suojelemiseksi hapelta, jota fotosynteesi jatkuvasti tuottaa veden hajotusreaktioissaan.Siirretty Doriast

    Accelerating innovation in biotechnology through knowledge in cyanobacterial photosynthesis

    Get PDF
    Microalgae are potential hosts for the sustainable production of valuable chemicals using CO2 as feedstock and light as an energy source. In whole-cell applications, biosynthetic reactions of interest are supplied with cellular reductants (e.g., ferredoxin or NADPH) which are recycled by the native photosynthetic apparatus. Using gene-editing techniques, photosynthesis can be engineered to increase the supply of reductants to the reactions of interest. However, such efforts require specialized knowledge about the photosynthetic machinery. Here, regulatory mechanisms of photosynthesis were investigated using the cyanobacterium Synechocystis sp. PCC 6803, a model organism of prokaryotic microalgae. In a primary regulatory process, excess photosynthetic electrons are transferred from ferredoxin to O2 via flavodiiron proteins. However, under controlled cultivation conditions, this process is dispensable and wastes reducing power. Here, it is shown that the heterodimeric flavodiiron proteins Flv1/Flv3 and Flv2/Flv4 have distinct electron sink capacities. Flv1/Flv3 disposes of electrons at a higher capacity and faster rate than Flv2/Flv4. The applicability of such knowledge is demonstrated by disrupting Flv1/Flv3 that consequently, enhanced the supply of reductants to a targeted chemical modification catalysed by a heterologous ene reductase. FLVB, a homolog of Flv3 in green algae has previously been shown to reduce not only O2 but nitric oxide (NO). This implies that flavodiiron proteins in cyanobacteria may be able to sink photosynthetic electrons into NO. However, it is shown here that NO inhibits photosynthesis in Synechocystis thus is unlikely to act as an efficient terminal electron acceptor in photosynthesis. Lastly, the promising cultivation conditions, photomixotrophy, were found to gradually decrease the photosynthetic capacity in Synechocystis. This decrease was reversed by deleting the cytochrome cM protein which appears to regulate the bioenergetic processes under photomixotrophic conditions. For developing an economically feasible and robust chassis to produce targeted compounds, scientific dilemmas are still to be solved at the laboratory scale. It is demonstrated that specialized knowledge created by fundamental research in photosynthesis provides a strong basis for innovative activity in the space of algae (cyanobacteria)-related biotechnologies.Mikrolevien avulla voidaan mahdollisesti tuottaa arvokkaita kemikaaleja kestÀvÀsti kÀyttÀen raaka-aineena hiilidioksidia ja energianlÀhteenÀ valoa. Koko solun sovelluksissa fotosynteesikoneiston kierrÀttÀmÀt solunsisÀiset pelkistÀjÀt (esim. ferredoksiini tai NADPH) mahdollistavat kyseiset biosynteettiset reaktiot. Geenieditointitekniikoilla voidaan muokata fotosynteesiÀ tuottamaan enemmÀn pelkistÀjiÀ kyseisissÀ reaktioissa. TÀmÀ vaatii kuitenkin fotosynteesikoneiston erityistÀ tuntemusta. TÀssÀ työssÀ tutkittiin fotosynteesin sÀÀtelymekanismeja prokaryoottisen mikrolevÀ malliorganismin, Synechocystis sp. PCC 6803 - syanobakteerin, avulla. Primaarisessa sÀÀtelyprosessissa ylimÀÀrÀiset fotosynteettiset elektronit kuljetetaan ferredoksiinilta O2:lle flavoproteiinien vÀlityksellÀ. Kontrolloiduissa kasvatusolosuhteissa prosessi on kuitenkin tarpeeton ja tuhlaa pelkistysvoimaa. TÀssÀ työssÀ osoitetaan, ettÀ flavoproteiinien Flv1/Flv3 ja Flv2/Flv4 heterodimeerien elektroninvastaanottajan ominaisuudet ovat erilaiset. Flv1/Flv3 poistaa elektroneja tehokkaammin ja nopeammin kuin Flv2/Flv4. NÀiden tietojen sovellettavuus voidaan osoittaa estÀmÀllÀ Flv1/Flv3 heterodimeeri, minkÀ seurauksena fotosynteettisiÀ pelkistÀjiÀ saadaan lisÀÀ kemialliseen reaktioon, jota katalysoi heterologinen ene-reduktaasi. Aiempi tutkimus on osoittanut, ettÀ FLVB, Flv3:n homologi viherlevissÀ, pelkistÀÀ O2:n lisÀksi myös typpioksidia (NO). Syanobakteerien flavoproteiinit pystyvÀtkin mahdollisesti poistamaan fotosynteettisiÀ elektroneja typpimonoksidiin. TÀssÀ työssÀ kuitenkin osoitetaan, ettÀ NO estÀÀ fotosynteesin Synechocystis-lajissa, joten on epÀtodennÀköistÀ, ettÀ NO toimisi tehokkaana fotosynteesin viimeisenÀ elektronin vastaanottajana. Fotomiksotrofian, joka on lupaava kasvatusolosuhde, huomattiin asteittain vÀhentÀvÀn Synechocystislajin fotosynteettistÀ kapasiteettiÀ. Fotosynteettisen kapasiteetin vÀheneminen kumoutui poistamalla arvoituksellinen sytokromi cM -proteiini, joka ilmeisesti sÀÀntelee bioenergeettisiÀ prosesseja fotomiksotrofisissa olosuhteissa. TieteellisiÀ dilemmoja on vielÀ ratkaistavana laboratoriotasolla, jotta voidaan kehittÀÀ taloudellisesti jÀrkevÀ ja vankka alusta haluttujen yhdisteiden tuottamiseksi. TÀssÀ työssÀ osoitetaan, ettÀ fotosynteesin perustutkimuksen luoma erityistietous tarjoaa vahvan pohjan innovaatioille leviin (ja syanobakteereihin) liittyvissÀ bioteknologioissa

    Role of tyrosine 238 in the active site of Rhodotorula gracilis D-amino acid oxidase - A site-directed mutagenesis study

    Get PDF
    Y238, one of the very few conserved residues in the active site of d-amino acid oxidases (DAAO), was mutated to phenylalanine and serine in the enzyme from the yeast Rhodotorula gracilis. The mutated proteins are catalytically competent thus eliminating Tyr238 as an active-site acid/base catalyst. Y238F and Y238S mutants exhibit a threefold slower turnover on d-alanine as substrate, which can be attributed to a slower rate of product release relative to the wild-type enzyme (a change of the rate constants for substrate binding was also evident). The Y238 DAAO mutants have spectral properties similar to those of the wild-type enzyme but the degree of stabilization of the flavin semiquinone and the redox properties in the free form of Y238S are different. The binding of the carboxylic acid competitive inhibitors and the substrate d-alanine are changed only slightly, suggesting that the overall substrate binding pocket remains intact. In agreement with data from the pH dependence of ligand binding and with the protein crystal structure, site-directed mutagenesis results emphasize the importance of residue Y238 in controlling access to the active site instead of a role in the substrate/ligand interaction

    Chlamydomonas genetics, a tool for the study of bioenergetic pathways

    Get PDF

    Time-resolved generation of membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and OH states

    Get PDF
    peer-reviewedTwo electrogenic phases with characteristic times of ~ 14 ÎŒs and ~ 290 ÎŒs are resolved in the kinetics of membrane potential generation coupled to single-electron reduction of the oxidized “relaxed” O state of ba3 oxidase from T. thermophilus (O → E transition). The rapid phase reflects electron redistribution between CuA and heme b. The slow phase includes electron redistribution from both CuA and heme b to heme a3, and electrogenic proton transfer coupled to reduction of heme a3. The distance of proton translocation corresponds to uptake of a proton from the inner water phase into the binuclear center where heme a3 is reduced, but there is no proton pumping and no reduction of CuB. Single-electron reduction of the oxidized “unrelaxed” state (OH → EH transition) is accompanied by electrogenic reduction of the heme b/heme a3 pair by CuA in a “fast” phase (~ 22 ÎŒs) and transfer of protons in “middle” and “slow” electrogenic phases (~ 0.185 ms and ~ 0.78 ms) coupled to electron redistribution from the heme b/heme a3 pair to the CuB site. The “middle” and “slow” electrogenic phases seem to be associated with transfer of protons to the proton-loading site (PLS) of the proton pump, but when all injected electrons reach CuB the electronic charge appears to be compensated by back-leakage of the protons from the PLS into the binuclear site. Thus proton pumping occurs only to the extent of ~ 0.1 H+/e−, probably due to the formed membrane potential in the experiment.ACCEPTEDpeer-reviewe

    Respiratory complexes III and IV can each bind two molecules of cytochrome c at low ionic strength

    Get PDF
    The transient interactions of respiratory cytochrome c with complexes III and IV is herein investigated by using heterologous proteins, namely human cytochrome c, the soluble domain of plant cytochrome c1 and bovine cytochrome c oxidase. The binding molecular mechanisms of the resulting cross-complexes have been analyzed by Nuclear Magnetic Resonance and Isothermal Titration Calorimetry. Our data reveal that the two cytochrome c-involving adducts possess a 2:1 stoichiometry – that is, two cytochrome c molecules per adduct – at low ionic strength. We conclude that such extra binding sites at the surfaces of complexes III and IV can facilitate the turnover and sliding of cytochrome c molecules and, therefore, the electron transfer within respiratory supercomplexes.España, MINECO Grant Nos. BFU2010-19451/BMC and BFU2012-31670/BMCJunta de AndalucĂ­a Grant PAI, BIO198España Ministerio de EducaciĂłn, y European Social Fund-ERDF AP2009-409
    • 

    corecore