4,487 research outputs found

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    Single-Event Upset Analysis and Protection in High Speed Circuits

    Get PDF
    The effect of single-event transients (SETs) (at a combinational node of a design) on the system reliability is becoming a big concern for ICs manufactured using advanced technologies. An SET at a node of combinational part may cause a transient pulse at the input of a flip-flop and consequently is latched in the flip-flop and generates a soft-error. When an SET conjoined with a transition at a node along a critical path of the combinational part of a design, a transient delay fault may occur at the input of a flip-flop. On the other hand, increasing pipeline depth and using low power techniques such as multi-level power supply, and multi-threshold transistor convert almost all paths in a circuit to critical ones. Thus, studying the behavior of the SET in these kinds of circuits needs special attention. This paper studies the dynamic behavior of a circuit with massive critical paths in the presence of an SET. We also propose a novel flip-flop architecture to mitigate the effects of such SETs in combinational circuits. Furthermore, the proposed architecture can tolerant a single event upset (SEU) caused by particle strike on the internal nodes of a flip-flo

    Bridging the Testing Speed Gap: Design for Delay Testability

    Get PDF
    The economic testing of high-speed digital ICs is becoming increasingly problematic. Even advanced, expensive testers are not always capable of testing these ICs because of their high-speed limitations. This paper focuses on a design for delay testability technique such that high-speed ICs can be tested using inexpensive, low-speed ATE. Also extensions for possible full BIST of delay faults are addresse

    Processor-controlled timing module for Loran-C receiver

    Get PDF
    Hardware documentation is provided for the modified Loran-C timing module, which uses direct software control in determining loop sample times. Computer loading is reduced by eliminating polled operation of the timing loop

    Modified timing module for Loran-C receiver

    Get PDF
    Full hardware documentation is provided for the circuit card implementing the Loran-C timing loop, and the receiver event-mark and re-track functions. This documentation is to be combined with overall receiver drawings to form the as-built record for this device. Computer software to support this module is integrated with the remainder of the receiver software, in the LORPROM program

    On testing VLSI chips for the big Viterbi decoder

    Get PDF
    A general technique that can be used in testing very large scale integrated (VLSI) chips for the Big Viterbi Decoder (BVD) system is described. The test technique is divided into functional testing and fault-coverage testing. The purpose of functional testing is to verify that the design works functionally. Functional test vectors are converted from outputs of software simulations which simulate the BVD functionally. Fault-coverage testing is used to detect and, in some cases, to locate faulty components caused by bad fabrication. This type of testing is useful in screening out bad chips. Finally, design for testability, which is included in the BVD VLSI chip design, is described in considerable detail. Both the observability and controllability of a VLSI chip are greatly enhanced by including the design for the testability feature

    MIDAS, prototype Multivariate Interactive Digital Analysis System for large area earth resources surveys. Volume 1: System description

    Get PDF
    A third-generation, fast, low cost, multispectral recognition system (MIDAS) able to keep pace with the large quantity and high rates of data acquisition from large regions with present and projected sensots is described. The program can process a complete ERTS frame in forty seconds and provide a color map of sixteen constituent categories in a few minutes. A principle objective of the MIDAS program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The hardware and software generated in the overall program is described. The system contains a midi-computer to control the various high speed processing elements in the data path, a preprocessor to condition data, and a classifier which implements an all digital prototype multivariate Gaussian maximum likelihood or a Bayesian decision algorithm. Sufficient software was developed to perform signature extraction, control the preprocessor, compute classifier coefficients, control the classifier operation, operate the color display and printer, and diagnose operation
    • …
    corecore