884 research outputs found

    Shift & 2D Rotation Invariant Sparse Coding for Multivariate Signals

    Get PDF
    International audienceClassical dictionary learning algorithms (DLA) allow unicomponent signals to be processed. Due to our interest in two-dimensional (2D) motion signals, we wanted to mix the two components to provide rotation invariance. So, multicomponent frameworks are examined here. In contrast to the well-known multichannel framework, a multivariate framework is first introduced as a tool to easily solve our problem and to preserve the data structure. Within this multivariate framework, we then present sparse coding methods: multivariate orthogonal matching pursuit (M-OMP), which provides sparse approximation for multivariate signals, and multivariate DLA (M-DLA), which empirically learns the characteristic patterns (or features) that are associated to a multivariate signals set, and combines shift-invariance and online learning. Once the multivariate dictionary is learned, any signal of this considered set can be approximated sparsely. This multivariate framework is introduced to simply present the 2D rotation invariant (2DRI) case. By studying 2D motions that are acquired in bivariate real signals, we want the decompositions to be independent of the orientation of the movement execution in the 2D space. The methods are thus specified for the 2DRI case to be robust to any rotation: 2DRI-OMP and 2DRI-DLA. Shift and rotation invariant cases induce a compact learned dictionary and provide robust decomposition. As validation, our methods are applied to 2D handwritten data to extract the elementary features of this signals set, and to provide rotation invariant decomposition

    Sampling and Recovery of Pulse Streams

    Full text link
    Compressive Sensing (CS) is a new technique for the efficient acquisition of signals, images, and other data that have a sparse representation in some basis, frame, or dictionary. By sparse we mean that the N-dimensional basis representation has just K<<N significant coefficients; in this case, the CS theory maintains that just M = K log N random linear signal measurements will both preserve all of the signal information and enable robust signal reconstruction in polynomial time. In this paper, we extend the CS theory to pulse stream data, which correspond to S-sparse signals/images that are convolved with an unknown F-sparse pulse shape. Ignoring their convolutional structure, a pulse stream signal is K=SF sparse. Such signals figure prominently in a number of applications, from neuroscience to astronomy. Our specific contributions are threefold. First, we propose a pulse stream signal model and show that it is equivalent to an infinite union of subspaces. Second, we derive a lower bound on the number of measurements M required to preserve the essential information present in pulse streams. The bound is linear in the total number of degrees of freedom S + F, which is significantly smaller than the naive bound based on the total signal sparsity K=SF. Third, we develop an efficient signal recovery algorithm that infers both the shape of the impulse response as well as the locations and amplitudes of the pulses. The algorithm alternatively estimates the pulse locations and the pulse shape in a manner reminiscent of classical deconvolution algorithms. Numerical experiments on synthetic and real data demonstrate the advantages of our approach over standard CS

    Dictionary Learning for Sparse Representations With Applications to Blind Source Separation.

    Get PDF
    During the past decade, sparse representation has attracted much attention in the signal processing community. It aims to represent a signal as a linear combination of a small number of elementary signals called atoms. These atoms constitute a dictionary so that a signal can be expressed by the multiplication of the dictionary and a sparse coefficients vector. This leads to two main challenges that are studied in the literature, i.e. sparse coding (find the coding coefficients based on a given dictionary) and dictionary design (find an appropriate dictionary to fit the data). Dictionary design is the focus of this thesis. Traditionally, the signals can be decomposed by the predefined mathematical transform, such as discrete cosine transform (DCT), which forms the so-called analytical approach. In recent years, learning-based methods have been introduced to adapt the dictionary from a set of training data, leading to the technique of dictionary learning. Although this may involve a higher computational complexity, learned dictionaries have the potential to offer improved performance as compared with predefined dictionaries. Dictionary learning algorithm is often achieved by iteratively executing two operations: sparse approximation and dictionary update. We focus on the dictionary update step, where the dictionary is optimized with a given sparsity pattern. A novel framework is proposed to generalize benchmark mechanisms such as the method of optimal directions (MOD) and K-SVD where an arbitrary set of codewords and the corresponding sparse coefficients are simultaneously updated, hence the term simultaneous codeword optimization (SimCO). Moreover, its extended formulation ‘regularized SimCO’ mitigates the major bottleneck of dictionary update caused by the singular points. First and second order optimization procedures are designed to solve the primitive and regularized SimCO. In addition, a tree-structured multi-level representation of dictionary based on clustering is used to speed up the optimization process in the sparse coding stage. This novel dictionary learning algorithm is also applied for solving the underdetermined blind speech separation problem, leading to a multi-stage method, where the separation problem is reformulated as a sparse coding problem, with the dictionary being learned by an adaptive algorithm. Using mutual coherence and sparsity index, the performance of a variety of dictionaries for underdetermined speech separation is compared and analyzed, such as the dictionaries learned from speech mixtures and ground truth speech sources, as well as those predefined by mathematical transforms. Finally, we propose a new method for joint dictionary learning and source separation. Different from the multistage method, the proposed method can simultaneously estimate the mixing matrix, the dictionary and the sources in an alternating and blind manner. The advantages of all the proposed methods are demonstrated over the state-of-the-art methods using extensive numerical tests

    Guided Matching Pursuit and its Application to Sound Source Separation

    Get PDF
    In the last couple of decades there has been an increasing interest in the application of source separation technologies to musical signal processing. Given a signal that consists of a mixture of musical sources, source separation aims at extracting and/or isolating the signals that correspond to the original sources. A system capable of high quality source separation could be an invaluable tool for the sound engineer as well as the end user. Applications of source separation include, but are not limited to, remixing, up-mixing, spatial re-configuration, individual source modification such as filtering, pitch detection/correction and time stretching, music transcription, voice recognition and source-specific audio coding to name a few. Of particular interest is the problem of separating sources from a mixture comprising two channels (2.0 format) since this is still the most commonly used format in the music industry and most domestic listening environments. When the number of sources is greater than the number of mixtures (which is usually the case with stereophonic recordings) then the problem of source separation becomes under-determined and traditional source separation techniques, such as “Independent Component Analysis” (ICA) cannot be successfully applied. In such cases a family of techniques known as “Sparse Component Analysis” (SCA) are better suited. In short a mixture signal is decomposed into a new domain were the individual sources are sparsely represented which implies that their corresponding coefficients will have disjoint (or almost) disjoint supports. Taking advantage of this property along with the spatial information within the mixture and other prior information that could be available, it is possible to identify the sources in the new domain and separate them by going back to the time domain. It is a fact that sparse representations lead to higher quality separation. Regardless, the most commonly used front-end for a SCA system is the ubiquitous short-time Fourier transform (STFT) which although is a sparsifying transform it is not the best choice for this job. A better alternative is the matching pursuit (MP) decomposition. MP is an iterative algorithm that decomposes a signal into a set of elementary waveforms called atoms chosen from an over-complete dictionary in such a way so that they represent the inherent signal structures. A crucial part of MP is the creation of the dictionary which directly affects the results of the decomposition and subsequently the quality of source separation. Selecting an appropriate dictionary could prove a difficult task and an adaptive approach would be appropriate. This work proposes a new MP variant termed guided matching pursuit (GMP) which adds a new pre-processing step into the main sequence of the MP algorithm. The purpose of this step is to perform an analysis of the signal and extract important features, termed guide maps, that are used to create dynamic mini-dictionaries comprising atoms which are expected to correlate well with the underlying signal structures thus leading to focused and more efficient searches around particular supports of the signal. This algorithm is accompanied by a modular and highly flexible MATLAB implementation which is suited to the processing of long duration audio signals. Finally the new algorithm is applied to the source separation of two-channel linear instantaneous mixtures and preliminary testing demonstrates that the performance of GMP is on par with the performance of state of the art systems

    Non-Negative Group Sparsity with Subspace Note Modelling for Polyphonic Transcription

    Get PDF
    This work was supported by EPSRC Platform Grant EPSRC EP/K009559/1, EPSRC Grant EP/L027119/1, and EPSRC Grant EP/J010375/1

    High mobility in OFDM based wireless communication systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has been adopted as the transmission scheme in most of the wireless systems we use on a daily basis. It brings with it several inherent advantages that make it an ideal waveform candidate in the physical layer. However, OFDM based wireless systems are severely affected in High Mobility scenarios. In this thesis, we investigate the effects of mobility on OFDM based wireless systems and develop novel techniques to estimate the channel and compensate its effects at the receiver. Compressed Sensing (CS) based channel estimation techniques like the Rake Matching Pursuit (RMP) and the Gradient Rake Matching Pursuit (GRMP) are developed to estimate the channel in a precise, robust and computationally efficient manner. In addition to this, a Cognitive Framework that can detect the mobility in the channel and configure an optimal estimation scheme is also developed and tested. The Cognitive Framework ensures a computationally optimal channel estimation scheme in all channel conditions. We also demonstrate that the proposed schemes can be adapted to other wireless standards easily. Accordingly, evaluation is done for three current broadcast, broadband and cellular standards. The results show the clear benefit of the proposed schemes in enabling high mobility in OFDM based wireless communication systems.Orthogonal Frequency Division Multiplexing (OFDM) wurde als Übertragungsschema in die meisten drahtlosen Systemen, die wir täglich verwenden, übernommen. Es bringt mehrere inhärente Vorteile mit sich, die es zu einem idealen Waveform-Kandidaten in der Bitübertragungsschicht (Physical Layer) machen. Allerdings sind OFDM-basierte drahtlose Systeme in Szenarien mit hoher Mobilität stark beeinträchtigt. In dieser Arbeit untersuchen wir die Auswirkungen der Mobilität auf OFDM-basierte drahtlose Systeme und entwickeln neuartige Techniken, um das Verhalten des Kanals abzuschätzen und seine Auswirkungen am Empfänger zu kompensieren. Auf Compressed Sensing (CS) basierende Kanalschätzverfahren wie das Rake Matching Pursuit (RMP) und das Gradient Rake Matching Pursuit (GRMP) werden entwickelt, um den Kanal präzise, robust und rechnerisch effizient abzuschätzen. Darüber hinaus wird ein Cognitive Framework entwickelt und getestet, das die Mobilität im Kanal erkennt und ein optimales Schätzungsschema konfiguriert. Das Cognitive Framework gewährleistet ein rechnerisch optimales Kanalschätzungsschema für alle möglichen Kanalbedingungen. Wir zeigen außerdem, dass die vorgeschlagenen Schemata auch leicht an andere Funkstandards angepasst werden können. Dementsprechend wird eine Evaluierung für drei aktuelle Rundfunk-, Breitband- und Mobilfunkstandards durchgeführt. Die Ergebnisse zeigen den klaren Vorteil der vorgeschlagenen Schemata bei der Ermöglichung hoher Mobilität in OFDM-basierten drahtlosen Kommunikationssystemen

    Blind Source Separation: the Sparsity Revolution

    Get PDF
    International audienceOver the last few years, the development of multi-channel sensors motivated interest in methods for the coherent processing of multivariate data. Some specific issues have already been addressed as testified by the wide literature on the so-called blind source separation (BSS) problem. In this context, as clearly emphasized by previous work, it is fundamental that the sources to be retrieved present some quantitatively measurable diversity. Recently, sparsity and morphological diversity have emerged as a novel and effective source of diversity for BSS. We give here some essential insights into the use of sparsity in source separation and we outline the essential role of morphological diversity as being a source of diversity or contrast between the sources. This paper overviews a sparsity-based BSS method coined Generalized Morphological Component Analysis (GMCA) that takes advantages of both morphological diversity and sparsity, using recent sparse overcomplete or redundant signal representations. GMCA is a fast and efficient blind source separation method. In remote sensing applications, the specificity of hyperspectral data should be accounted for. We extend the proposed GMCA framework to deal with hyperspectral data. In a general framework, GMCA provides a basis for multivariate data analysis in the scope of a wide range of classical multivariate data restorate. Numerical results are given in color image denoising and inpainting. Finally, GMCA is applied to the simulated ESA/Planck data. It is shown to give effective astrophysical component separation
    corecore