776 research outputs found

    Predicting Pancreas Cell Fate Decisions and Reprogramming with a Hierarchical Multi-Attractor Model

    Get PDF
    Cell fate reprogramming, such as the generation of insulin-producing β cells from other pancreas cells, can be achieved by external modulation of key transcription factors. However, the known gene regulatory interactions that form a complex network with multiple feedback loops make it increasingly difficult to design the cell reprogramming scheme because the linear regulatory pathways as schemes of causal influences upon cell lineages are inadequate for predicting the effect of transcriptional perturbation. However, sufficient information on regulatory networks is usually not available for detailed formal models. Here we demonstrate that by using the qualitatively described regulatory interactions as the basis for a coarse-grained dynamical ODE (ordinary differential equation) based model, it is possible to recapitulate the observed attractors of the exocrine and β, δ, α endocrine cells and to predict which gene perturbation can result in desired lineage reprogramming. Our model indicates that the constraints imposed by the incompletely elucidated regulatory network architecture suffice to build a predictive model for making informed decisions in choosing the set of transcription factors that need to be modulated for fate reprogramming

    Circadian Entrainment Triggers Maturation of Human In Vitro Islets

    No full text
    Stem-cell-derived tissues could transform disease research and therapy, yet most methods generate functionally immature products. We investigate how human pluripotent stem cells (hPSCs) differentiate into pancreatic islets in vitro by profiling DNA methylation, chromatin accessibility, and histone modification changes. We find that enhancer potential is reset upon lineage commitment and show how pervasive epigenetic priming steers endocrine cell fates. Modeling islet differentiation and maturation regulatory circuits reveals genes critical for generating endocrine cells and identifies circadian control as limiting for in vitro islet function. Entrainment to circadian feeding/fasting cycles triggers islet metabolic maturation by inducing cyclic synthesis of energy metabolism and insulin secretion effectors, including antiphasic insulin and glucagon pulses. Following entrainment, hPSC-derived islets gain persistent chromatin changes and rhythmic insulin responses with a raised glucose threshold, a hallmark of functional maturity, and function within days of transplantation. Thus, hPSC-derived tissues are amenable to functional improvement by circadian modulation

    Genetic programming of the visual forebrain in the absence of retinal input

    Get PDF

    Signal Processing during Developmental Multicellular Patterning

    Get PDF
    Developing design strategies for tissue engineering and regenerative medicine is limited by our nascent understanding of how cell populations self-organize into multicellular structures on synthetic scaffolds. Mechanistic insights can be gleaned from the quantitative analysis of biomolecular signals that drive multicellular patterning during the natural processes of embryonic and adult development. This review describes three critical layers of signal processing that govern multicellular patterning: spatiotemporal presentation of extracellular cues, intracellular signaling networks that mediate crosstalk among extracellular cues, and finally, intranuclear signal integration at the level of transcriptional regulation. At every level in this hierarchy, the quantitative attributes of signals have a profound impact on patterning. We discuss how experiments and mathematical models are being used to uncover these quantitative features and their impact on multicellular phenotype

    The Architecture And Dynamics Of Gene Regulatory Networks Directing Cell-Fate Choice During Murine Hematopoiesis

    Get PDF
    Mammals produce hundreds of billions of new blood cells every day througha process known as hematopoiesis. Hematopoiesis starts with stem cells that develop into all the different types of cells found in blood by changing their genome-wide gene expression. The remodeling of genome-wide gene expression can be primarily attributed to a special class of proteins called transcription factors (TFs) that can activate or repress other genes, including genes encoding TFs. TFs and their targets therefore form recurrent networks called gene regulatory networks (GRNs). GRNs are crucial during physiological developmental processes, such as hematopoiesis, while abnormalities in the regulatory interactions of GRNs can be detrimental to the organisms. To this day we do not know all the key compo-nents that comprise hematopoietic GRNs or the complete set of their regulatory interactions. Inference of GRNs directly from genetic experiments is low throughput and labor intensive, while computational inference of comprehensive GRNs is challenging due to high processing times. This dissertation focuses on deriving the architecture and the dynamics of hematopoietic GRNs from genome-wide gene expression data obtained from high-resolution time-series experiments. The dissertation also aims to address the technical challenge of speeding up the process of GRN inference. Here GRNs are inferred and modeled using gene circuits, a data-driven method based on Ordinary Differential Equations (ODEs). In gene circuits, the rate of change of a gene product depends on regulatory influences from other genes encoded as a set of parameters that are inferred from time-series data. A twelve-gene GRN comprising genes encoding key TFs and cytokine receptors involved in erythrocyte-neutrophil differentiation was inferred from a high-resolution time-series dataset of the in vitro differentiation of a multipotential cell line. The inferred GRN architecture agreed with prior empirical evidence and pre- dicted novel regulatory interactions. The inferred GRN model was also able to predict the outcome of perturbation experiments, suggesting an accurate inference of GRN architecture. The dynamics of the inferred GRN suggested an alternative explanation to the currently accepted sequence of regulatory events during neutrophil differentiation. The analysis of the model implied that two TFs, C/EBPα and Gfi1, initiate cell-fate choice in the neutrophil lineage, while PU.1, believed to be a master regulator of all white-blood cells, is activated only later. This inference was confirmed in a single-cell RNA-Seq dataset from mouse bone marrow, in which PU.1 upregulation was preceded by C/EBPα and Gfi1 upregulation. This dissertation also presents an analysis of a high-temporal resolution genome-wide gene expression dataset of in vitro macrophage-neutrophil differentiation. Analysis of these data reveal that genome-wide gene expression during differentiation is highly dynamic and complex. A large-scale transition is observed around 8h and shown to be related to wide-spread physiological remodeling of the cells. The genes associated by myeloid differentiation mainly change during the first 4 hours, implying that the cell-fate decision takes place in the first four hours of differentiation. The dissertation also presents a new classification-based model-training technique that addresses the challenge of the high computational cost of inferring GRNs. This method, called Fast Inference of Gene Regulation (FIGR), is demonstrated to be two orders magnitude faster than global non-linear optimization techniques and its computational complexity scales much better with GRN size. This work has demonstrated the feasibility of simulating relatively large realistic GRNs using a dynamical and mechanistically accurate model coupled to high-resolution time series data and that such models can yield novel biological insight. Taken together with the macrophage-neutrophil dataset and the computationally efficient GRN inference methodology, this work should open up new avenues for modeling more comprehensive GRNs in hematopoiesis and the broader field of developmental biology

    Science Forum: The Human Cell Atlas

    Get PDF
    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community
    • …
    corecore