354 research outputs found

    OFDM demodulation in underwater time-reversed shortned channels

    Get PDF
    This work addresses the problem of OFDM transmission in dispersive underwater channels where impulse responses lasting tens of miliseconds cannot be reliably handled by recently proposed methods due to limitations of channel estimation algorithms. The proposed approach relies on passive time reversal for multichannel combining of observed waveforms at an array of sensors prior to OFDM processing, which produces an equivalent channel with a shorter impulse response that can be handled much more easily. A method for tracking the narrowband residual phase variations of the channel after Doppler preprocessing is proposed. This is a variation of an existing technique that can improve the spectral efficiency of OFDM by reducing the need for pilot symbols. This work also examines techniques to handle sparse impulse responses and proposes a channel estimation method where an l1 norm is added to the standard least-squares cost function to transparently induce sparseness in the vector of channel coefficients. Algorithms are assessed using data collected during the UAB’07 experiment, which was conducted in Trondheim fjord, Norway, in September 2007. Data were transmitted with bandwidths of 1.5 and 4.5 kHz, and recorded at a range of about 800 m in a 16-hydrophone array. Significant multipath was observed over a period of at least 30 ms.FC

    Effects of errorless learning on the acquisition of velopharyngeal movement control

    Get PDF
    Session 1pSC - Speech Communication: Cross-Linguistic Studies of Speech Sound Learning of the Languages of Hong Kong (Poster Session)The implicit motor learning literature suggests a benefit for learning if errors are minimized during practice. This study investigated whether the same principle holds for learning velopharyngeal movement control. Normal speaking participants learned to produce hypernasal speech in either an errorless learning condition (in which the possibility for errors was limited) or an errorful learning condition (in which the possibility for errors was not limited). Nasality level of the participants’ speech was measured by nasometer and reflected by nasalance scores (in %). Errorless learners practiced producing hypernasal speech with a threshold nasalance score of 10% at the beginning, which gradually increased to a threshold of 50% at the end. The same set of threshold targets were presented to errorful learners but in a reversed order. Errors were defined by the proportion of speech with a nasalance score below the threshold. The results showed that, relative to errorful learners, errorless learners displayed fewer errors (50.7% vs. 17.7%) and a higher mean nasalance score (31.3% vs. 46.7%) during the acquisition phase. Furthermore, errorless learners outperformed errorful learners in both retention and novel transfer tests. Acknowledgment: Supported by The University of Hong Kong Strategic Research Theme for Sciences of Learning © 2012 Acoustical Society of Americapublished_or_final_versio

    Performance evaluation of T-transform based OFDM in underwater acoustic channels

    Get PDF
    PhD ThesisRecently there has been an increasing trend towards the implementation of orthogonal frequency division multiplexing (OFDM) based multicarrier communication systems in underwater acoustic communications. By dividing the available bandwidth into multiple sub-bands, OFDM systems enable reliable transmission over long range dispersive channels. However OFDM is prone to impairments such as severe frequency selective fading channels, motioned induced Doppler shift and high peak-to-average-power ratio (PAPR). In order to fully exploit the potential of OFDM in UWA channels, those issues have received a great deal of attention in recent research. With the aim of improving OFDM's performance in UWA channels, a T-transformed based OFDM system is introduced using a low computational complexity T-transform that combines the Walsh-Hadamard transform (WHT) and the discrete Fourier transform (DFT) into a single fast orthonormal unitary transform. Through real-world experiment, performance comparison between the proposed T-OFDM system and conventional OFDM system revealed that T-OFDM performs better than OFDM with high code rate in frequency selective fading channels. Furthermore, investigation of different equalizer techniques have shown that the limitation of ZF equalizers affect the T-OFDM more (one bad equalizer coefficient affects all symbols) and so developed a modified ZF equalizer with outlier detection which provides major performance gain without excessive computation load. Lastly, investigation of PAPR reduction methods delineated that T-OFDM has inherently lower PAPR and it is also far more tolerant of distortions introduced by the simple clipping method. As a result, lower PAPR can be achieved with minimal overhead and so outperforming OFDM for a given power limit at the transmitter

    Time reversal transmission approach for ultra wideband communications

    Get PDF
    [no abstract

    Across frequency processes involved in auditory detection of coloration

    Get PDF

    The perceptual flow of phonetic feature processing

    Get PDF
    corecore