1,315 research outputs found

    An algorithm for MD5 single-block collision attack using high-performance computing cluster

    Get PDF
    The parallel algorithm and its implementation for performing a single-block collision attack on MD5 are described. The algorithm is implemented as MPI program based upon the source code of Dr Marc Stevens\u27 collision search sequential program. In this paper we present a parallel single-block MD5 collision searching algorithm itself and details of its implementation. We also disclose a pair of new single-block messages colliding under MD5 that were found using our algorithm on the high-performance computing cluster

    Construct MD5 Collisions Using Just A Single Block Of Message

    Get PDF
    So far, all the differential attacks on MD5 were constructed through multi-block collision method. Can collisions for MD5 be found using just a single block of message (i.e. 512-bit)? This has been an open problem since the first 2-block collision attack was given. Today, in the last month (Dec,) of 2010, we have to make public a result of our 1-block collision attacks on MD5 in Table 1 as below, which was actually obtained at the beginning of 2010, but for security reasons, the techniques are not allowed to be disclosed at the moment. Here, we are calling for a challenge to the cryptology community that, any one who first gives a new different 1-block collision attack on MD5 will win 10,000 US dollars (about 50,000 RMB in Chinese Yuan) as a reward for his (her) excellent work. This call for challenge will be ended on Jan 1st, 2013. This announcement’s first affiliated unit will be responsible for this amount of reward when a new different 1-block collision attack is received and verified

    A Meaningful MD5 Hash Collision Attack

    Get PDF
    It is now proved by Wang et al., that MD5 hash is no more secure, after they proposed an attack that would generate two different messages that gives the same MD5 sum. Many conditions need to be satisfied to attain this collision. Vlastimil Klima then proposed a more efficient and faster technique to implement this attack. We use these techniques to first create a collision attack and then use these collisions to implement meaningful collisions by creating two different packages that give identical MD5 hash, but when extracted, each gives out different files with contents specified by the atacker

    A Formula That Generates Hash Collisions

    Full text link
    We present an explicit formula that produces hash collisions for the Merkle-Damg{\aa}rd construction. The formula works for arbitrary choice of message block and irrespective of the standardized constants used in hash functions, although some padding schemes may cause the formula to fail. This formula bears no obvious practical implications because at least one of any pair of colliding messages will have length double exponential in the security parameter. However, due to ambiguity in existing definitions of collision resistance, this formula arguably breaks the collision resistance of some hash functions.Comment: 10 page

    Reverse-Engineering of the Cryptanalytic Attack Used in the Flame Super-Malware

    Get PDF
    In May 2012, a highly advanced malware for espionage dubbed Flame was found targeting the Middle-East. As it turned out, it used a forged signature to infect Windows machines by MITM-ing Windows Update. Using counter-cryptanalysis, Stevens found that the forged signature was made possible by a chosen-prefix attack on MD5 \cite{DBLP:conf/crypto/Stevens13}. He uncovered some details that prove that this attack differs from collision attacks in the public literature, yet many questions about techniques and complexity remained unanswered. In this paper, we demonstrate that significantly more information can be deduced from the example collision. Namely, that these details are actually sufficient to reconstruct the collision attack to a great extent using some weak logical assumptions. In particular, we contribute an analysis of the differential path family for each of the four near-collision blocks, the chaining value differences elimination procedure and a complexity analysis of the near-collision block attacks and the associated birthday search for various parameter choices. Furthermore, we were able to prove a lower-bound for the attack's complexity. This reverse-engineering of a non-academic cryptanalytic attack exploited in the real world seems to be without precedent. As it allegedly was developed by some nation-state(s), we discuss potential insights to their cryptanalytic knowledge and capabilities

    Reverse-Engineering of the Cryptanalytic Attack Used in the Flame Super-Malware

    Get PDF
    In May 2012, a highly advanced malware for espionage dubbed Flame was found targeting the Middle-East. As it turned out, it used a forged signature to infect Windows machines by MITM-ing Windows Update. Using counter-cryptanalysis, Stevens found that the forged signature was made possible by a chosen-prefix attack on MD5 \cite{DBLP:conf/crypto/Stevens13}. He uncovered some details that prove that this attack differs from collision attacks in the public literature, yet many questions about techniques and complexity remained unanswered. In this paper, we demonstrate that significantly more information can be deduced from the example collision. Namely, that these details are actually sufficient to reconstruct the collision attack to a great extent using some weak logical assumptions. In particular, we contribute an analysis of the differential path family for each of the four near-collision blocks, the chaining value differences elimination procedure and a complexity analysis of the near-collision block attacks and the associated birthday search for various parameter choices. Furthermore, we were able to prove a lower-bound for the attack's complexity. This reverse-engineering of a non-academic cryptanalytic attack exploited in the real world seems to be without precedent. As it allegedly was developed by some nation-state(s) \cite{WashingtonPost_Flame,kaspersky_flame,crysis_flame}, we discuss potential insights to their cryptanalytic knowledge and capabilities
    • …
    corecore