178 research outputs found

    Dual element MIMO planar inverted-F antenna for 5G millimeter wave application

    Get PDF
    This work presents a 28 GHz Dual Element Multiple Input Multiple Output (MIMO) Planar Inverted-F Antenna for millimeter wave 5G mobile terminal. The antenna design employs PIFA design concept as it is a common antenna type use for mobile phone as it provides wide bandwidth and good performance. The antenna design begins with a characterization of the single element PIFA design and then extended to Dual Element MIMO PIFA design. The single element PIFA design is enhanced to MIMO design by extending the ground plane and locate the second PIFA at the other end. Isolation between the antenna elements of the MIMO PIFA is analyzed by varying the gap distance between the antenna elements. The result for Envelope Correlation Coefficient, Diversity Gain and Multiplexing Efficiency is also presented. The simulation computed using Computer Simulation Technology (CST) Microwave Studio software

    Statistical Review Evaluation of 5G Antenna Design Models from a Pragmatic Perspective under Multi-Domain Application Scenarios

    Get PDF
    Antenna design for the 5G spectrum requires analysis of contextual frequency bands, design of miniaturization techniques, gain improvement models, polarization techniques, standard radiation pattern designs, metamaterial integration, and substrate selection. Most of these models also vary in terms of qualitative & and quantitative parameters, which include forward gain levels, reverse gain, frequency response, substrate types, antenna shape, feeding levels, etc. Due to such a wide variety in performance, it is ambiguous for researchers to identify the optimum models for their application-specific use cases. This ambiguity results in validating these models on multiple simulation tools, which increases design delays and the cost of deployments. To reduce this ambiguity, a survey of recently proposed antenna design models is discussed in this text. This discussion recommended that polarization optimization and gain maximization are the major impact factors that must be considered while designing antennas. It is also recommended that collocated microstrip slot antennas, fully planar dual-polarized broadband antennas, and real-time deployments of combined slot antenna pairs with wide-band decoupling are very advantageous. Based on this discussion, researchers will be able to identify optimal performance-specific models for different applications. This discussion also compares underlying models in terms of their quantitative parameters, which include forward gain levels, bandwidth, complexity of deployment, scalability, and cost metrics. Upon referring to this comparison, researchers will be able to identify the optimum models for their performance-specific use cases. This review also formulates a novel Antenna Design Rank Metric (ADRM) that combines the evaluated parameters, thereby allowing readers to identify antenna design models that are optimized for multiple parameters and can be used for large-scale 5G communication scenarios

    Multiband Antennas Design Techniques for 5G Networks: Present and Future Research Directions

    Get PDF
    With the development of wireless communication system has demanded compact wireless devices that allow more space to integrate the other electronics components. Advancement in technology creates challenges in implementing antenna for multiple RF band with a wide range of frequencies. With the advancement of optimization technique we can improve the antenna design as well as provide us the motivation of analyzing the existing studies in order to categorize and synthesize them in a meaningful manner. The objective of this paper contributes in two ways. First, it provides the research and development trends and novel approaches in design of multiband MIMO, smart reconfigurable and defected ground structure (DGS) antenna techniques for wireless system. Secondly, it highlights unique design issue reported in literature. The proposed paper aim is filling the gap in the literature and providing the researcher a useful reference

    Beam Splitting Planar Inverted F Antenna For 5G Communication

    Get PDF
    A planar inverted-F antenna with symmetrical split beams and loaded with radio frequency absorbers (here Eccosorb MCS) for 5G communication is proposed. The multi-beam antennas reduce the requirement of number of antennas and provide wide coverage. But they require a complex system such as a phased array or MIMO antennas. On the other hand, multi-beam antennas do not have such requirements. In this work, we propose a PIFA antenna which achieves multi-beam behaviour by six slabs of absorbers placed periodically between the PIFA patch and substrate to split the beams into two directions at +26°. The proposed antenna obtains a frequency band of 24.2- 25.7 GHz and achieves a high gain of approximately 10 dB at +26°. The performance of the proposed antenna is suitable for G communication. All simulations of the antenna are carried out using Ansys HFSS. The design was validated by simulations and later confirmed with measurements. &nbsp

    Antenna Design for 5G and Beyond

    Get PDF
    With the rapid evolution of the wireless communications, fifth-generation (5G) communication has received much attention from both academia and industry, with many reported efforts and research outputs and significant improvements in different aspects, such as data rate speed and resolution, mobility, latency, etc. In some countries, the commercialization of 5G communication has already started as well as initial research of beyond technologies such as 6G.MIMO technology with multiple antennas is a promising technology to obtain the requirements of 5G/6G communications. It can significantly enhance the system capacity and resist multipath fading, and has become a hot spot in the field of wireless communications. This technology is a key component and probably the most established to truly reach the promised transfer data rates of future communication systems. In MIMO systems, multiple antennas are deployed at both the transmitter and receiver sides. The greater number of antennas can make the system more resistant to intentional jamming and interference. Massive MIMO with an especially high number of antennas can reduce energy consumption by targeting signals to individual users utilizing beamforming.Apart from sub-6 GHz frequency bands, 5G/6G devices are also expected to cover millimeter-wave (mmWave) and terahertz (THz) spectra. However, moving to higher bands will bring new challenges and will certainly require careful consideration of the antenna design for smart devices. Compact antennas arranged as conformal, planar, and linear arrays can be employed at different portions of base stations and user equipment to form phased arrays with high gain and directional radiation beams. The objective of this Special Issue is to cover all aspects of antenna designs used in existing or future wireless communication systems. The aim is to highlight recent advances, current trends, and possible future developments of 5G/6G antennas

    MIMO antenna for mobile terminal

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Eletrónica de Telecomunicações e de ComputadoresNowadays there is a great demand for quality of service, higher bit rate and greater ef ficiency in mobile terminals, leading to technological advances in the world of telecom munications. MIMO technology makes use of multiple antennas in transmission and reception, allowing a higher data transfer rate and greater reliability without the need for extra power and bandwidth. In this MSc dissertation a planar IFA antenna was designed, which operates in the 2 Wi-Fi frequency bands of 2.4 GHz and 5 GHz. A MIMO system with 4 antennas based on the planar IFA, and its performance is analysed through key parameters such as correlation between elements, diversity gain and multiplexing efficiency. After the simulation and analysis of the system, a prototype was fabricated and measured in order to validate the coverage of the designated frequencies. The results achieved show that the designed antenna is feasible for WiFi applications, covering the intended frequency bands. In simulation the antenna obtains a good per formance in terms of MIMO parameters. A size/performance trade-off was applied to the final design, in favour of decreasing the size of the structure to make it possible to use it in smaller size devices.Nos dias de hoje existe uma maior exigência de qualidade de serviço, maior débito binário e maior eficiência nos terminais móveis, levando ao avanço tecnológico do mundo das telecomunicações. A tecnologia MIMO faz uso de múltiplas antenas na transmissão e na recepção, permitindo uma maior taxa de transferência de dados e uma maior fiabilidade sem a necessidade de aumentar a potência e largura de banda extra. Nesta dissertação de mestrado foi dimensionada uma antena IFA planar, que atua nas 2 bandas de frequência Wi-Fi de 2.4 GHz e 5 GHz. Um sistema MIMO com 4 antenas baseado nesta antena é concebido, sendo o seu desempenho analisado através de parâmetros chave, como a correlação entre elementos, ganho de diversidade e a eficiência de multiplexagem. Após a simulação e análise do sistema, foi fabricado e medido um protótipo de forma a validar o desempenho da antena projetada. Os resultados alcançados demonstram que a antena projetada é viável para aplicações WiFi, cobrindo as bandas de frequência pretendidas. Em simulação a antena obtém um bom desempenho em termos de parâmetros MIMO. Foi aplicado ao design final um compromisso dimensão/desempenho, em prol de diminuir o tamanho da estru tura para tornar possível a sua utilização em dispositivos móveis de tamanho mais reduzido.info:eu-repo/semantics/publishedVersio

    Millimeter wave fifth generation (5G) antenna for smartphone application

    Get PDF
    In this paper, a single element antenna is designed at millimeter-wave frequency bands for future 5G smartphone applications. The configuration of proposed antenna is multiple L-slots on the ground plane which is designed on a low cost FR4 board. The antenna covers a frequency range between 28 to 35 GHz with a higher bandwidth 4.7 GHz. The antenna shows an excellent performance when integrated with the mobile phone application. The single element antenna exhibits a maximum radiation pattern around 5.945 dBi

    The Study of Reconfigurable Antennas and Associated Circuitry

    Get PDF
    This research focuses on the design of pattern reconfigurable antennas and the associated circuitry. The proposed pattern reconfigurable antenna designs benefit from advantages such as maximum pattern diversity and optimum switching circuits to realise 5G reconfigurable antennas. Whereas MIMO based solutions can provide increased channel capacity, they demand high computational capability and power consumption due to multiple channel processing. This prevents their use in many applications most notably in the Internet of Things where power consumption is of key importance. A switched-beam diversity allows an energy-efficient solution improving the link budget even for small low-cost battery operated IoT/sensor network applications. The main focus of the antenna reconfiguration in this work is for switched-beam diversity. The fundamental switching elements are discussed including basic PIN diode circuits. Techniques to switch the antenna element in the feed or shorting the antenna element to the ground plane are presented. A back-to-back microstrip patch antenna with two hemispherical switchable patterns is proposed. The patch elements on a common ground plane, are switched with a single-pole double-throw PIN diode circuit. Switching the feed selects either of two identical oppositely oriented radiation patterns for maximum diversity in one plane. The identical design of the antenna elements provides similar performance control of frequency and radiation pattern in different states. This antenna provides a simple solution to cross-layer PIN diode circuit designs. A mirrored structure study provides an understanding of performance control for different switching states. A printed inverted-F antenna is presented for monopole reconfigurable antenna design. The proposed low-profile antenna consists of one main radiator and one parasitic element. By shorting the parasitic element to the ground plane using only one PIN diode, the antenna is capable of switching both the pattern and polarisation across the full bandwidth. The switched orthogonal pattern provides the maximum spatial pattern diversity and is realised using a simple structure. Then, a dual-stub coplanar Vivaldi antenna with a parasitic element is presented for the 5G mm-Wave band. The use of a dual-stub coupled between the parasitic element and two tapered slots is researched. The parasitic element shape and size is optimised to increase the realised gain. A bandpass coupled line filter is used for frequency selective features. The use of slits on the outer edge of the ground plane provides a greater maximum gain. This integrated filtenna offers lower insertion loss than the commercial DC blocks. The UWB antenna with an integrated filter can be used for harmonic suppression. The influence of the integrated filter circuit close to the antenna geometry informs the design of PIN diode circuit switching and power supply in the 5G band. Based on the filter design in the mm-Wave band, a method of designing a feasible DC power supply for the PIN diode in the mm-Wave band is studied. A printed Yagi-Uda antenna array is integrated with switching circuitry to realise a switched 180° hemispheres radiation pattern. The antenna realises a maximum diversity in one plane. The study offers the possibility to use PIN diodes in the mm-Wave band for reconfigurable antenna designs. For the presented antennas, key geometric parameters are discussed for improved understanding of the trade-offs in radiation pattern/beamwidth and gain control for reconfigurable antenna applications

    Advanced Radio Frequency Antennas for Modern Communication and Medical Systems

    Get PDF
    The main objective of this book is to present novel radio frequency (RF) antennas for 5G, IOT, and medical applications. The book is divided into four sections that present the main topics of radio frequency antennas. The rapid growth in development of cellular wireless communication systems over the last twenty years has resulted in most of world population owning smartphones, smart watches, I-pads, and other RF communication devices. Efficient compact wideband antennas are crucial in RF communication devices. This book presents information on planar antennas, cavity antennas, Vivaldi antennas, phased arrays, MIMO antennas, beamforming phased array reconfigurable Pabry-Perot cavity antennas, and time modulated linear array
    corecore