1,305 research outputs found

    Massive Non-Orthogonal Multiple Access for Cellular IoT: Potentials and Limitations

    Full text link
    The Internet of Things (IoT) promises ubiquitous connectivity of everything everywhere, which represents the biggest technology trend in the years to come. It is expected that by 2020 over 25 billion devices will be connected to cellular networks; far beyond the number of devices in current wireless networks. Machine-to-Machine (M2M) communications aims at providing the communication infrastructure for enabling IoT by facilitating the billions of multi-role devices to communicate with each other and with the underlying data transport infrastructure without, or with little, human intervention. Providing this infrastructure will require a dramatic shift from the current protocols mostly designed for human-to-human (H2H) applications. This article reviews recent 3GPP solutions for enabling massive cellular IoT and investigates the random access strategies for M2M communications, which shows that cellular networks must evolve to handle the new ways in which devices will connect and communicate with the system. A massive non-orthogonal multiple access (NOMA) technique is then presented as a promising solution to support a massive number of IoT devices in cellular networks, where we also identify its practical challenges and future research directions.Comment: To appear in IEEE Communications Magazin

    A hybrid TIM-NOMA scheme for the SISO Broadcast Channel

    Get PDF
    Future mobile communication networks will require enhanced network efficiency and reduced system overhead due to their user density and high data rate demanding applications of the mobile devices. Research on Blind Interference Alignment (BIA) and Topological Interference Management (TIM) has shown that optimal Degrees of Freedom (DoF) can be achieved, in the absence of Channel State Information (CSI) at the transmitters, reducing the network's overhead. Moreover, the recently emerged Non-Orthogonal Multiple Access (NOMA) scheme suggests a different multiple access approach, compared to the current orthogonal methods employed in 4G networks, resulting in high capacity gains. Our contribution is a hybrid TIM-NOMA scheme in Single-Input-Single-Output (SISO) K-user cells, in which users are divided into T groups, and 1/T DoF is achieved for each user. By superimposing users in the power domain, we introduce a two-stage decoding process, managing 'inter-group' interference based on the TIM principles, and 'intra-group' interference based on Successful Interference Cancellation (SIC), as proposed by NOMA. We show that for high SNR values the hybrid scheme can improve the sum rate by at least 100% when compared to Time Division Multiple Access (TDMA).Comment: 6 pages, 6 figures, submitted to IEEE ICC'15 - IEEE SCAN Worksho

    Performance evaluation of interference cancellation techniques using adaptive antennas

    Get PDF
    Two array-based algorithms, which jointly exploit or compensate for the spatial and temporal characteristics of the propagation channel, are proposed for intercell interference suppression in UMTS scenarios. The first one is the array extension of the Viterbi algorithm and is referred to as Vector Viterbi algorithm (VVA). The second algorithm, known as filtered training sequence multisensor receiver (FTS-MR), belongs to a class of algorithms in which a narrowband beamformer is placed prior to the MLSE detector. In order to assess performance of the proposed schemes, a set of link-level computer simulations adopting FRAMES' proposal for UMTS air-interface as well as realistic channel models for third generation communication systems is provided, Simulation results reveal gains, in terms of C/I, of 7-10 dB for the VVA with respect to the conventional VA and even higher for the FTS-MR.Peer ReviewedPostprint (published version

    Array joint detection for C/TDMA systems in UMTS environments

    Get PDF
    Two array-based schemes for intracell and intercell interference suppression are proposed. In both cases, the spatial and temporal characteristics of the propagation are jointly exploited by placing a narrowband beamformer prior to the corresponding data detection stage. In the first approach, the filtered training sequence joint detection receiver (FTS-JDR), the beamformer is devoted to exclusively cancel out intercell interference. This way, intracell users can be jointly detected in a MMSE detection block. In contrast, the second algorithm, known as the filtered training sequence multisensor receiver (FTS-MR), aims to attenuate all the interferers in the beamforming stage which allows the user of interest to be detected following a MLSE strategy. In order to assess the performance of the proposed schemes, a set of link-level computer simulations adopting FRAMES' proposal for UMTS air-interface as well as realistic channel models for third generation communication systems is provided. Simulation results indicate that lower BERs can be obtained by concentrating interference cancellation tasks in the beamforming block.Peer ReviewedPostprint (published version

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    A Distributed Approach to Interference Alignment in OFDM-based Two-tiered Networks

    Full text link
    In this contribution, we consider a two-tiered network and focus on the coexistence between the two tiers at physical layer. We target our efforts on a long term evolution advanced (LTE-A) orthogonal frequency division multiple access (OFDMA) macro-cell sharing the spectrum with a randomly deployed second tier of small-cells. In such networks, high levels of co-channel interference between the macro and small base stations (MBS/SBS) may largely limit the potential spectral efficiency gains provided by the frequency reuse 1. To address this issue, we propose a novel cognitive interference alignment based scheme to protect the macro-cell from the cross-tier interference, while mitigating the co-tier interference in the second tier. Remarkably, only local channel state information (CSI) and autonomous operations are required in the second tier, resulting in a completely self-organizing approach for the SBSs. The optimal precoder that maximizes the spectral efficiency of the link between each SBS and its served user equipment is found by means of a distributed one-shot strategy. Numerical findings reveal non-negligible spectral efficiency enhancements with respect to traditional time division multiple access approaches at any signal to noise (SNR) regime. Additionally, the proposed technique exhibits significant robustness to channel estimation errors, achieving remarkable results for the imperfect CSI case and yielding consistent performance enhancements to the network.Comment: 15 pages, 10 figures, accepted and to appear in IEEE Transactions on Vehicular Technology Special Section: Self-Organizing Radio Networks, 2013. Authors' final version. Copyright transferred to IEE
    • …
    corecore