72 research outputs found

    Electrochemical Detection of Prostate Carcinoma Biomarkers Using Nanotechnology

    Get PDF
    The first chapter of this thesis speaks about prostate specific antigen, carbon nanotubes and horseradish peroxidase. The second chapter discusses the electrochemistry and catalysis of horseradish peroxidase (HRP) and myoglobin (Mb) covalently attached to vertically aligned carbon nanotube arrays used as a tranducer. Cyclic voltammetry results gave quasi-reversible FeIII/FeII voltammetry and electrochemical catalysis involving catalytic reduction of hydrogen peroxide for both the iron-heme enzymes in myoglobin and horseradish peroxidase coupled to the carboxylated ends of the carbon nanotube arrays by amine bioconjugation reactions. Reduction peak currents gave linear relationships with scan-rates, typical of thin layer voltammetry. Results suggest that the vertically aligned nanotube arrays behave like metal electrical conductors shuttling electrons from the external circuit to redox active sites of the enzymes. Electrode-driven peroxidase activity of myoglobin and horseradish peroxidase attached to the carbon nanotube arrays was demonstrated, with detection limits for hydrogen peroxide in buffer solutions of 100nM. Moreover, Resonance Raman characterization gave spectral signatures indicating successful fabrication of the SWNT arrays with optimum 100% coverage at FeCl3 solution at a pH of 1.7. These prototype carbon nanotube biosensors are easy to prepare, and the enzyme films were stable for weeks. The third chapter describes our initial studies in the development of our prototype immunosensor using SWNT nanotubes for electrochemical detection prostate specific antigen (PSA), a cancer biomarker protein in serum. This novel immunosensor features vertically aligned nanotubes with captured immunological complex in a sandwich format. The antigen-antibody biorecognition event was monitored using catalytic reaction involving horseradish peroxidase conjugated to a secondary antibody. This initial non-amplified approach provided a decent detection limit of 0.4ng/mL for Prostate Specific Antigen, which compare favorably with the standard enzyme-linked immunosorbent assay (ELISA). Work is in progress to lower the detection limits using specially designed bioconjuates with multiple enzyme labels for signal amplifications. These easily fabricated SWNT immunosensors show excellent promise for clinical screening of cancer biomarkers and point-of-care diagnosis. Chapter 4 is describing The Pell Scholars Honors Program Connection

    Advanced carbon nanomaterials for electrochemiluminescent biosensor applications

    Get PDF
    Electrochemiluminescent biosensors are nowadays an established technology in the field of immunosensors and diagnostics. Along with the advent of nanotechnology, the marriage between electrochemiluminescence and nanomaterials results in promising enhancing strategies in many biosensor applications. Among nanomaterials, carbon-based ones are the most used, as (i)scaffolds, (ii)luminophores and (iii)electrode materials of the sensor. In this review, we describe the importance of a rational modification and functionalization of carbon nanomaterials to optimize electrochemiluminescence signal, and we also resume the latest and most relevant applications of electrochemiluminescent biosensors based on carbon nanomaterials

    Biosensors for Cancer Biomarkers

    Get PDF

    Nanostructure-Based Electrochemical Immunosensors as Diagnostic Tools

    Get PDF
    Electrochemical immunosensors are affinity-based biosensors characterized by several useful features such as specificity, miniaturizability, low cost and simplicity, making them very interesting for many applications in several scientific fields. One of the significant issues in the design of electrochemical immunosensors is to increase the system’s sensitivity. Different strategies have been developed, one of the most common is the use of nanostructured materials as electrode materials, nanocarriers, electroactive or electrocatalytic nanotracers because of their abilities in signal amplification and biocompatibility. In this review, we will consider some of the most used nanostruc- tures employed in the development of electrochemical immunosensors (e.g., metallic nanoparticles, graphene, carbon nanotubes) and many other still uncommon nanomaterials. Furthermore, their diagnostic applications in the last decade will be discussed, referring to two relevant issues of present-day: the detection of tumor markers and viruses

    Current nanotechnology advances in diagnostic biosensors

    Get PDF
    Current diagnostics present challenges that are imposed by increased life expectancy in the worldwide population. These challenges are related, not only to satisfy the need for higher performance of diagnostic tests, but also to the capacity of creating pointâ ofâ care, wearable, multiplexing and implantable diagnostic platforms that will allow early detection, continuous monitoring and treatment of health conditions in a personalized manner. These health challenges are translated into technological issues that need to be solved with multidisciplinary knowledge. Nanoscience and technology play a fundamental role in the development of miniaturized sensors that are cheap, accurate, sensitive and consume less power. At nanometre scale, these materials possess higher volumeâ toâ surface ratio and display novel properties (composition, charge, reactive sites, physical structure and potential) that are exploited for sensing purposes. These nanomaterials can therefore be integrated into diagnostic sensing platforms allowing the creation of novel technologies that tackle current health challenges. These nanomaterialâ enhanced sensors are extremely diverse, since they use numerous types of materials, nanostructures and detection modes for a multitude of biomarkers. The purpose of this review is to summarize the current stateâ ofâ theâ art of nanomaterialâ enhanced sensors, emphasizing and discussing the diagnostic challenges that are addressed by the different engineering and nanotechnology approaches. This review also aims to identify the drawbacks of nanomaterialâ enhanced sensors, as well as point out future developmental directions.This research was funded by FCT- FUNDAÇÃO PARA A CIÊNCIA E TECNOLOGIA, grant numbers: PTDC/EMD-EMD/31590/2017 and PTDC/BTM-ORG/28168/2017

    Nanotechnology for Early Cancer Detection

    Get PDF
    Vast numbers of studies and developments in the nanotechnology area have been conducted and many nanomaterials have been utilized to detect cancers at early stages. Nanomaterials have unique physical, optical and electrical properties that have proven to be very useful in sensing. Quantum dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, gold nanowires and many other materials have been developed over the years, alongside the discovery of a wide range of biomarkers to lower the detection limit of cancer biomarkers. Proteins, antibody fragments, DNA fragments, and RNA fragments are the base of cancer biomarkers and have been used as targets in cancer detection and monitoring. It is highly anticipated that in the near future, we might be able to detect cancer at a very early stage, providing a much higher chance of treatment

    Carbon nanotube (CNT)-based biosensors

    Get PDF
    This review focuses on recent advances in the application of carbon nanotubes (CNTs) for the development of sensors and biosensors. The paper discusses various configurations of these devices, including their integration in analytical devices. Carbon nanotube-based sensors have been developed for a broad range of applications including electrochemical sensors for food safety, optical sensors for heavy metal detection, and field-effect devices for virus detection. However, as yet there are only a few examples of carbon nanotube-based sensors that have reached the marketplace. Challenges still hamper the real-world application of carbon nanotube-based sensors, primarily, the integration of carbon nanotube sensing elements into analytical devices and fabrication on an industrial scale

    A Sandwich Electrochemical Immunosensor Using Magnetic DNA Nanoprobes for Carcinoembryonic Antigen

    Get PDF
    A novel magnetic nanoparticle-based electrochemical immunoassay of carcinoembryonic antigen (CEA) was designed as a model using CEA antibody-functionalized magnetic beads [DNA/Fe3O4/ZrO2; Fe3O4 (core)/ZrO2 (shell) nano particles (ZMPs)] as immunosensing probes. To design the immunoassay, the CEA antibody and O-phenylenediamine (OPD) were initially immobilized on a chitosan/nano gold composite membrane on a glassy carbon electrode (GCE/CS-nano Au), which was used for CEA recognition. Then, horseradish peroxidase (HRP)-labeled anti-CEA antibodies (HRP-CEA Ab2) were bound to the surface of the synthesized magnetic ZMP nanoparticles as signal tag. Thus, the sandwich-type immune complex could be formed between secondary antibody (Ab2) modified DNA/ZMPs nanochains tagged by HRP and GCE/CS-nano Au. Unlike conventional nanoparticle-based electrochemical immunoassays, the recognition elements of this immunoassay included both electron mediators and enzyme labels, which obviously simplifies the electrochemical measurement process. The sandwich-type immunoassay format was used for online formation of the immunocomplex of CEA captured in the detection cell with an external magnet. The electrochemical signals derived from HRP during the reduction of H2O2 with OPD as electron mediator were measured. The method displayed a high sensitivity for CEA detection in the range of 0.008–200 ng/mL, with a detection limit of 5 pg/mL (estimated at a signal-to-noise ratio of 3). The precision, reproducibility, and stability of the immunoassay were good. The use of the assay was evaluated with clinical serum samples, and the results were in excellent accordance with those obtained using the standard enzyme-linked immunosorbent assay (ELISA) method. Thus, the magnetic nanoparticle-based assay format is a promising approach for clinical applications, and it could be further developed for the detection of other biomarkers in cancer diagnosis
    corecore