49 research outputs found

    Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

    Get PDF
    Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor .Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc

    Simplified Neutrosophic Sets Based on Interval Dependent Degree for Multi-Criteria Group Decision-Making Problems

    Get PDF
    In this paper, a new approach and framework based on the interval dependent degree for multi-criteria group decision-making (MCGDM) problems with simplified neutrosophic sets (SNSs) is proposed. Firstly, the simplified dependent function and distribution function are defined. Then, they are integrated into the interval dependent function which contains interval computing and distribution information of the intervals

    Single-valued neutrosophic TODIM method based on cumulative prospect theory for multi-attribute group decision making and its application to medical emergency management evaluation

    Get PDF
    In recent years, emergent public health events happen from time to time, which puts forward new requirements for the establishment of a perfect medical emergency system. It is a new direction to evaluate the effectiveness of medical emergency systems from the perspective of multi-attribute group decision making (MAGDM) issues. In such article, we tend to resolve the MAGDM issues under single-valued neutrosophic sets (SVNSs) with TODIM method based on cumulative prospect theory (CPT). And the single-valued neutrosophic TODIM method based on CPT (CPT-SVNTODIM) for MAGDM issues are developed. This new method not only inherits advantages of classical TODIM method, but also has further improvement in some aspects. For example, we set up the entropy to calculate attribute weights for ensuring the more objective decision-making process. Furthermore, it is also an extension of MAGDM method to utilize single-valued neutrosophic numbers (SVNNs) to depict decision makers’ ideas. In addition, we introduce the application of CPT-SVN-TODIM method in the assessment of medical emergency management. And finally, the reliability of CPT-SVN-TODIM method is confirmed by comparing with some other methods

    The generalized dice similarity measures for multiple attribute decision making with hesitant fuzzy linguistic information

    Get PDF
    In this paper, we shall present some novel Dice similarity measures of hesitant fuzzy linguistic term sets and the generalized Dice similarity measures of hesitant fuzzy linguistic term sets and indicate that the Dice similarity measures and asymmetric measures (projection measures) are the special cases of the generalized Dice similarity measures in some parameter values. Then, we propose the generalized Dice similarity measures-based multiple attribute decision making models with hesitant fuzzy linguistic term sets. Finally, a practical example concerning the evaluation of the quality of movies is given to illustrate the applicability and advantage of the proposed generalized Dice similarity measure

    Type-2 neutrosophic number based multi-attributive border approximation area comparison (MABAC) approach for offshore wind farm site selection in USA.

    Get PDF
    The technical, logistical, and ecological challenges associated with offshore wind development necessitate an extensive site selection analysis. Technical parameters such as wind resource, logistical concerns such as distance to shore, and ecological considerations such as fisheries all must be evaluated and weighted, in many cases with incomplete or uncertain data. Making such a critical decision with severe potential economic and ecologic consequences requires a strong decision-making approach to ultimately guide the site selection process. This paper proposes a type-2 neutrosophic number (T2NN) fuzzy based multi-criteria decision-making (MCDM) model for offshore wind farm (OWF) site selection. This approach combines the advantages of neutrosophic numbers sets, which can utilize uncertain and incomplete information, with a multi-attributive border approximation area comparison that provides formulation flexibility and easy calculation. Further, this study develops and integrates a techno-economic model for OWFs in the decision-making. A case study is performed to evaluate and rank five proposed OWF sites off the coast of New Jersey. To validate the proposed model, a comparison against three alternative T2NN fuzzy based models is performed. It is demonstrated that the implemented model yields the same ranking order as the alternative approaches. Sensitivity analysis reveals that changing criteria weightings does not affect the ranking order

    An Extended Single-Valued Neutrosophic Projection-Based Qualitative Flexible Multi-Criteria Decision-Making Method

    Get PDF
    With respect to multi-criteria decision-making (MCDM) problems in which the criteria denote the form of single-valued neutrosophic sets (SVNSs), and the weight information is also fully unknown, a novel MCDM method based on qualitative flexible multiple criteria (QUALIFLEX) is developed. Firstly, the improved cosine measure of the included angle between two SVNSs is defined

    A Neutrosophic Clinical Decision-Making System for Cardiovascular Diseases Risk Analysis

    Get PDF
    Cardiovascular diseases are the leading cause of death worldwide. Early diagnosis of heart disease can reduce this large number of deaths so that treatment can be carried out. Many decision-making systems have been developed, but they are too complex for medical professionals. To target these objectives, we develop an explainable neutrosophic clinical decision-making system for the timely diagnose of cardiovascular disease risk. We make our system transparent and easy to understand with the help of explainable artificial intelligence techniques so that medical professionals can easily adopt this system. Our system is taking thirtyfive symptoms as input parameters, which are, gender, age, genetic disposition, smoking, blood pressure, cholesterol, diabetes, body mass index, depression, unhealthy diet, metabolic disorder, physical inactivity, pre-eclampsia, rheumatoid arthritis, coffee consumption, pregnancy, rubella, drugs, tobacco, alcohol, heart defect, previous surgery/injury, thyroid, sleep apnea, atrial fibrillation, heart history, infection, homocysteine level, pericardial cysts, marfan syndrome, syphilis, inflammation, clots, cancer, and electrolyte imbalance and finds out the risk of coronary artery disease, cardiomyopathy, congenital heart disease, heart attack, heart arrhythmia, peripheral artery disease, aortic disease, pericardial disease, deep vein thrombosis, heart valve disease, and heart failure. There are five main modules of the system, which are neutrosophication, knowledge base, inference engine, de-neutrosophication, and explainability. To demonstrate the complete working of our system, we design an algorithm and calculates its time complexity. We also present a new de-neutrosophication formula, and give comparison of our the results with existing methods
    corecore