1,145 research outputs found

    Combining Monitoring with Run-Time Assertion Checking

    Get PDF
    According to a study in 2002 commissioned by a US Department, software bugs annually costs the US economy an estimated 59billion.Amorerecentstudyin2013byCambridgeUniversityestimatedthattheglobalcosthasrisento59 billion. A more recent study in 2013 by Cambridge University estimated that the global cost has risen to 312 billion globally. There exists various ways to prevent, isolate and fix software bugs, ranging from lightweight methods that are (semi)-automatic, to heavyweight methods that require significant user interaction. Our own method described in this tutorial is based on automated run-time checking of a combination of protocol- and data-oriented properties of object-oriented programs

    Overview on agent-based social modelling and the use of formal languages

    Get PDF
    Transdisciplinary Models and Applications investigates a variety of programming languages used in validating and verifying models in order to assist in their eventual implementation. This book will explore different methods of evaluating and formalizing simulation models, enabling computer and industrial engineers, mathematicians, and students working with computer simulations to thoroughly understand the progression from simulation to product, improving the overall effectiveness of modeling systems.Postprint (author's final draft

    Run-time checking multi-threaded java programs

    Get PDF
    Assertion checking traditionally focused on state-based properties. In a multi-threaded environment, approaches based on sharedstate require complex locking mechanisms to ensure that specifications are checked atomically (in the same state). In addition to this increased complexity, locks also negatively affect performance. In this paper, we extend both the underlying theory and the practical implementation of SAGA, a run-time checker for single-threaded Java programs, to multi-threading, while avoiding locks

    A model checking-based approach for security policy verification of mobile systems

    Full text link
    International audienceThis article describes an approach for the automated verification of mobile systems. Mobile systems are characterized by the explicit notion of (e.g., sites where they run) and the ability to execute at different locations, yielding a number of security issues. To this aim, we formalize mobile systems as Labeled Kripke Structures, encapsulating the notion of that describes the hierarchical nesting of the threads constituting the system. Then, we formalize a generic that includes rules for expressing and manipulating the code location. In contrast to many other approaches, our technique supports both access control and information flow specification. We developed a prototype framework for model checking of mobile systems. It works directly on the program code (in contrast to most traditional process-algebraic approaches that can model only limited details of mobile systems) and uses abstraction-refinement techniques, based also on location abstractions, to manage the program state space. We experimented with a number of mobile code benchmarks by verifying various security policies. The experimental results demonstrate the validity of the proposed mobile system modeling and policy specification formalisms and highlight the advantages of the model checking-based approach, which combines the validation of security properties with other checks, such as the validation of buffer overflows

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    FlashLight: A Dynamic Detector of Shared State, Race Conditions, and Locking Models in Concurrent Java Programs

    Get PDF
    Concurrent Java programs are difficult to understand and implement correctly. This difficultly leads to code faults that are the source of many real-world reliability and security problems. Many factors contribute to concurrency faults in Java code; for example, programmers may not understand Java language semantics or, when using a Java library or framework, may not understand that their resulting program is concurrent. This thesis describes a dynamic analysis tool, named FlashLight, that detects shared state and possible race conditions within a program. FlashLight illuminates the concurrency within a program for programmers who are wholly or partially in the dark about their software\u27s concurrency. FlashLight also works in concert with the Fluid assurance tool to propose Greenhouse-style lock policy models based on a program\u27s observed locking behavior. After review by a programmer to ensure reasonableness, these models can be verified by the Fluid assurance tool. The author\u27s combination of a dynamic tool with a program verification system focused on concurrency fault detection and repair is the primary contribution of this research. He applied FlashLight to several concurrent Java programs, including a large commercial web application server. His case study experiences induced him to improve FlashLight to do the following: (1) allow the programmer to specify interesting time quantums (e.g., this is the start-up phase of the program), and (2) support the common Java programming idiom of not locking shared state during object construction. Both improvements help to reduce false positives. FlashLight introduces an overhead of roughly 1.7 times the original execution time of the program. The most significant limitation of FlashLight is that it is not fully integrated into the Fluid assurance tool with respect to the user experience

    Prototyping Formal System Models with Active Objects

    Full text link
    We propose active object languages as a development tool for formal system models of distributed systems. Additionally to a formalization based on a term rewriting system, we use established Software Engineering concepts, including software product lines and object orientation that come with extensive tool support. We illustrate our modeling approach by prototyping a weak memory model. The resulting executable model is modular and has clear interfaces between communicating participants through object-oriented modeling. Relaxations of the basic memory model are expressed as self-contained variants of a software product line. As a modeling language we use the formal active object language ABS which comes with an extensive tool set. This permits rapid formalization of core ideas, early validity checks in terms of formal invariant proofs, and debugging support by executing test runs. Hence, our approach supports the prototyping of formal system models with early feedback.Comment: In Proceedings ICE 2018, arXiv:1810.0205

    Procedure-modular specification and verification of temporal safety properties

    Get PDF
    This paper describes ProMoVer, a tool for fully automated procedure-modular verification of Java programs equipped with method-local and global assertions that specify safety properties of sequences of method invocations. Modularity at the procedure-level is a natural instantiation of the modular verification paradigm, where correctness of global properties is relativized on the local properties of the methods rather than on their implementations. Here, it is based on the construction of maximal models for a program model that abstracts away from program data. This approach allows global properties to be verified in the presence of code evolution, multiple method implementations (as arising from software product lines), or even unknown method implementations (as in mobile code for open platforms). ProMoVer automates a typical verification scenario for a previously developed tool set for compositional verification of control flow safety properties, and provides appropriate pre- and post-processing. Both linear-time temporal logic and finite automata are supported as formalisms for expressing local and global safety properties, allowing the user to choose a suitable format for the property at hand. Modularity is exploited by a mechanism for proof reuse that detects and minimizes the verification tasks resulting from changes in the code and the specifications. The verification task is relatively light-weight due to support for abstraction from private methods and automatic extraction of candidate specifications from method implementations. We evaluate the tool on a number of applications from the domains of Java Card and web-based application
    corecore