430 research outputs found

    Effect inference for deterministic parallelism

    Get PDF
    In this report we sketch a polymorphic type and effect inference system for ensuring deterministic execution of parallel programs containing shared mutable state. It differs from that of Gifford and Lucassen in being based on Hindley Milner polymorphism and in formalizing the operational semantics of parallel and sequential computation

    Pushdown Control-Flow Analysis of Higher-Order Programs

    Full text link
    Context-free approaches to static analysis gain precision over classical approaches by perfectly matching returns to call sites---a property that eliminates spurious interprocedural paths. Vardoulakis and Shivers's recent formulation of CFA2 showed that it is possible (if expensive) to apply context-free methods to higher-order languages and gain the same boost in precision achieved over first-order programs. To this young body of work on context-free analysis of higher-order programs, we contribute a pushdown control-flow analysis framework, which we derive as an abstract interpretation of a CESK machine with an unbounded stack. One instantiation of this framework marks the first polyvariant pushdown analysis of higher-order programs; another marks the first polynomial-time analysis. In the end, we arrive at a framework for control-flow analysis that can efficiently compute pushdown generalizations of classical control-flow analyses.Comment: The 2010 Workshop on Scheme and Functional Programmin

    Polymorphic Context-free Session Types

    Full text link
    Context-free session types provide a typing discipline for recursive structured communication protocols on bidirectional channels. They overcome the restriction of regular session type systems to tail recursive protocols. This extension enables us to implement serialisation and deserialisation of tree structures in a fully type-safe manner. We present the theory underlying the language FreeST 2, which features context-free session types in an extension of System F with linear types and a kind system to distinguish message types and channel types. The system presents some metatheoretical challenges, which we address, contractivity in the presence of polymorphism, a non-trivial equational theory on types, and decidability of type equivalence. We also establish standard results on type preservation, progress, and a characterisation of erroneous processes

    Data Definitions in the ACL2 Sedan

    Full text link
    We present a data definition framework that enables the convenient specification of data types in ACL2s, the ACL2 Sedan. Our primary motivation for developing the data definition framework was pedagogical. We were teaching undergraduate students how to reason about programs using ACL2s and wanted to provide them with an effective method for defining, testing, and reasoning about data types in the context of an untyped theorem prover. Our framework is now routinely used not only for pedagogical purposes, but also by advanced users. Our framework concisely supports common data definition patterns, e.g. list types, map types, and record types. It also provides support for polymorphic functions. A distinguishing feature of our approach is that we maintain both a predicative and an enumerative characterization of data definitions. In this paper we present our data definition framework via a sequence of examples. We give a complete characterization in terms of tau rules of the inclusion/exclusion relations a data definition induces, under suitable restrictions. The data definition framework is a key component of counterexample generation support in ACL2s, but can be independently used in ACL2, and is available as a community book.Comment: In Proceedings ACL2 2014, arXiv:1406.123
    • …
    corecore