3,362 research outputs found

    Micro combined heat and power management for a residential system

    Get PDF
    Fuel cell technology has reached commercialisation of fuel cells in application areas such as residential power systems, automobile engines and driving of industrial manufacturing processes. This thesis gives an overview of the current state of fuel cell-based technology research and development, introduces a μCHP system sizing strategy and proposes methods of improving on the implementation of residential fuel cell-based μCHP technology. The three methods of controlling residential μCHP systems discussed in this thesis project are heat-led, electricity-led and cost-minimizing control. Simulations of a typical HT PEMFC -based residential μCHP unit are conducted using these control strategies. A model of a residential μCHP system is formulated upon which these simulated tests are conducted. From these simulations, equations to model the costs of running a fuel-cell based μCHP system are proposed. Having developed equations to quantify the running costs of the proposed μCHP system a method for determining the ideal size of a μCHP system is developed. A sizing technique based on industrial CHP sizing practices is developed in which the running costs and capital costs of the residential μCHP system are utilised to determine the optimal size of the system. Residential thermal and electrical load profile data of a typical Danish household are used. Having simulated the system a practical implementation of the power electronics interface between the fuel cell and household grid is done. Two topologies are proposed for the power electronics interface a three-stage topology and a two-stage topology. The efficiencies of the overall systems of both topologies are determined. The system is connected to the grid so the output of each system is phase-shifted and DC injection, harmonic distortion, voltage range and frequency range are determined for both systems to determine compliance with grid standards. Deviations between simulated results and experimental results are recorded and discussed and relevant conclusions are drawn from these

    Single stage boost inverter for standalone fuel cell applications

    Get PDF
    The proton exchange membrane fuel cell (PEMFC) is a promising technology that can be manufactured in South Africa because of the platinum catalyst required. South Africa is rich in platinum and, therefore, the PEMFC system can be cost-effectively produced. In residential stationary applications of the PEMFC a power conditioning system is required to convert the de voltage output of the PEMFC to ac voltage. Therefore, the focus of this thesis is to analyse, simulate and design a power electronic dc-ac converter. The power electronic dc-ac converter is based on a transformerless single stage power conversion scheme, which has better weight, volume and efficiency than the commonly used two stage power conversion schemes. The selected topology is the boost inverter that consists of two identical boost converters for boosting and inversion of the PEMFC de voltage. Moreover, it achieves reliable operation under nonlinear loads, sudden load changes and inrush current, using a double loop control strategy. Initially, the double loop control strategy was introduced with proportional integral (Pl) controllers. Recently, with the widespread use of proportional resonant PR controllers, the PI controllers were replaced with PR controllers to achieve zero steady state error for the ac components of the reference. However, during the implementation of the PR controllers on the boost inverter, a significant de offset in the output voltage of the boost inverter was observed, which was due to the mismatch of the boost converters' parameters. The de voltage affects pulsating torque AC machines, accuracy in domestic watt-meter and safety of residual current protection. Furthermore, the output voltages of the boost converters showed a clipping effect, which was caused by the dead time of the switching devices used in the boost converters. An integral term was added to the PR controller to form the controller here called the proportional integral resonant (PIR) controller. This controller achieved satisfactory results of de and ac voltage reference following capability and maintains the same advantages of the PI controllers. However, the efficiency was not high due to the high resistance of the inductor used in the boost inverter system

    Direct usage of photovoltaic solar panels to supply a freezer motor with variable DC input voltage

    Get PDF
    In this paper, a single-phase photovoltaic (PV) inverter fed by a boost converter to supply a freezer motor with variable DC input is investigated. The proposed circuit has two stages. Firstly, the DC output of the PV panel that varies between 150 and 300 V will be applied to the boost converter. The boost converter will boost the input voltage to a fixed 300 V DC. Next, this voltage is supplied to the single-phase full-bridge inverter to obtain 230 V AC. In the end, The output of the inverter will feed a freezer motor. The PV panels can be stand-alone or grid-connected. The grid-connected PV is divided into two categories, such as with a transformer and without a transformer, a transformer type has galvanic isolation resulting in increasing the security and also provides no further DC current toward the grid, but it is expensive, heavy and bulky. The transformerless type holds high efficiency and it is cheaper, but it suffers from leakage current between PV and the grid. This paper proposes a stand-alone direct use of PV to supply a freezer; therefore, no grid connection will result in no leakage current between the PV and Grid. The proposed circuit has some features such as no filtering circuit at the output of the inverter, no battery in the system, DC-link instead of AC link that reduces no-loads, having a higher efficiency, and holding enough energy in the DC-link capacitor to get the motor started. The circuit uses no transformers, thus, it is cheaper and has a smaller size. In addition, the system does not require a complex pulse width modulation (PWM) technique, because the motor can operate with a pulsed waveform. The control strategy uses the PWM signal with the desired timing. With this type of square wave, the harmonics (5th and 7th) of the voltage are reduced. The experimental and simulation results are presented to verify the feasibility of the proposed strategy

    Power Quality Enhancement in Hybrid Photovoltaic-Battery System based on three–Level Inverter associated with DC bus Voltage Control

    Get PDF
    This modest paper presents a study on the energy quality produced by a hybrid system consisting of a Photovoltaic (PV) power source connected to a battery. A three-level inverter was used in the system studied for the purpose of improving the quality of energy injected into the grid and decreasing the Total Harmonic Distortion (THD). A Maximum Power Point Tracking (MPPT) algorithm based on a Fuzzy Logic Controller (FLC) is used for the purpose of ensuring optimal production of photovoltaic energy. In addition, another FLC controller is used to ensure DC bus stabilization. The considered system was implemented in the Matlab /SimPowerSystems environment. The results show the effectiveness of the proposed inverter at three levels in improving the quality of energy injected from the system into the grid.Peer reviewedFinal Published versio

    A review and design of power electronics converters for fuel cell hybrid system applications

    Get PDF
    AbstractThis paper presents an overview of most promising power electronics topologies for a fuel cell hybrid power conversion system which can be utilized in many applications such as hybrid electrical vehicles (HEV), distributed generations (DG) and uninterruptible-power-supply (UPS) systems. Then, a multiple-input power conversion system including a decoupled dual-input converter and a three-phase neutral-point-clamped (NPC) inverter is proposed. The system can operate in both stand-alone and grid-connected modes. Simulation and experimental results are provided to show the feasibility of the proposed system and the effectiveness of the control methods

    Solar And Fuel Cell Circuit Modeling, Analysis And Integrations With Power Conversion Circuits For Distributed Generation

    Get PDF
    Renewable energy is considered to be one of the most promising alternatives for the growing energy demand in response to depletion of fossil fuels and undesired global warming issue. With such perspective, Solar Cells and Fuel Cells are most viable, environmentally sound, and sustainable energy sources for power generation. Solar and Fuel cells have created great interests in modern applications including distributed energy generation to provide clean energy. The purpose of this thesis was to perform a detailed analysis and modeling of Solar and Fuel cells using Cadence SPICE, and to investigate dynamic interactions between the modules and power conversion circuits. Equivalent electronic static and dynamic models for Solar and Fuel Cells, their electrical characteristics, and typical power loss mechanisms associated with them are demonstrated with simulation results. Power conversion circuits for integration with the dynamic models of these renewable low voltage sources are specifically chosen to boost and regulate the input low dc voltage from the modules. The scope of this work was to analyze and model solar and fuel cells to study their terminal characteristics, power loss mechanisms, modules and their dynamics when interfaced with power converters, which would lead to better understanding of these renewable sources in power applications

    Fuel cell power conditioning multiphase converter for 1400 VDC megawatts stacks

    Get PDF
    Thesis (PhD (Electrical Engineering))--Cape Peninsula University of Technology, 2019Energy systems based on fossil fuel have demonstrated their abilities to permit economic development. However, with the fast exhaustion of this energy source, the expansion of the world energy demand and concerns over global warming, new energy systems dependent on renewable and other sustainable energy are gaining more interests. It is a fact that future development in the energy sector is founded on the utilisation of renewable and sustainable energy sources. These energy sources can enable the world to meet the double targets of diminishing greenhouse gas emissions and ensuring reliable and cost-effective energy supply. Fuel cells are one of the advanced clean energy technologies to substitute power generation systems based on fossil fuel. They are viewed as reliable and efficient technologies to operate either tied or non-tied to the grid to power applications ranging from domestic, commercial to industrial. Multiple fuel cell stacks can be associated in series and parallel to obtain a fuel cell system with high power up to megawatts. The connection of megawatts fuel cell systems to a utility grid requires that the power condition unit serving as the interface between the fuel cell plant and the grid operates accordingly. Different power conditioning unit topologies can be adopted, this study considers a multilevel inverter. Multilevel inverters are getting more popularity and attractiveness as compared to conventional inverters in high voltage and high-power applications. These inverters are suitable for harmonic mitigation in high-power applications whereby switching devices are unable to function at high switching frequencies. For a given application, the choice of appropriate multilevel topology and its control scheme are not defined and depend on various engineering compromises, however, the most developed multilevel inverter topologies include the Diode Clamped, the Flying Capacitor and the Cascade Full Bridge inverters. On the other hand, a multilevel inverter can be either a three or a five, or a nine level, however, this research focuses on the three-level diode clamped inverters. The aim of this thesis is to model and control a three-level diode clamped inverter for the grid connection of a megawatt fuel cell stack. Besides the grid, the system consists of a 1.54 MW operating at 1400 V DC proton exchange membrane fuel cell stack, a 1.26 MW three-level diode clamped inverter with a nominal voltage of 600 V and an LCL filter which is designed to reduce harmonics and meet the standards such as IEEE 519 and IEC 61000-3-6. The inverter control scheme comprises voltage and current regulators to provide a good power factor and satisfy synchronisation requirements with the grid. The frequency and phase are synchronised with those of the grid through a phase locked loop. The modelling and simulation are performed using Matlab/Simulink. The results show good performance of the developed system with a low total harmonic distortion of about 0.35% for the voltage and 0.19% for the current

    Power Decoupling Control for Single-Phase Grid-Tied PEMFC Systems With Virtual-Vector-Based MPC

    Get PDF
    The fuel cell grid-tied power generation system usually includes a dc-dc converter and a dc-ac inverter. In a single-phase system, inherent low-order current pulsations are introduced into the system, which can have harmful effects on the fuel cell stack. For example, reducing the output voltage and output efficiency, a reduction in service life, and even accelerates the degradation rate of the membrane electrode of a proton exchange membrane fuel cell (PEMFC). In addition, dc/ac coupling power can cause distortion in the dc input current and ac grid current. To eliminate the input ripple and ensure high ac power quality on the grid side, this paper proposes a novel power decoupling control for single-phase grid-tied PEMFC systems, which uses an improved model predictive control (MPC) algorithm. With the help of the virtual vector methods, which are realized by a two-stage optimization method, excellent tracking effect and robustness can be ensured. Simulations and experimental results show that the proposed algorithm can not only completely eliminate the input current ripple and reduce the total harmonic distortion (THD) of ac current on the grid side, but also improve the transient performance of the system
    corecore