102 research outputs found

    Localization Techniques in Multiple-Input Multiple-Output Communication: Fundamental Principles, Challenges, and Opportunities

    Get PDF
    This chapter provides an overview of localization techniques in Multiple-Input Multiple-Output (MIMO) communication systems. The chapter mainly focuses on sub-6 GHz and mmWave bands. MIMO technology enables high-capacity wireless communication, but also presents challenges for localization due to the complexity of the signal propagation environment. Various methods have been developed to overcome these challenges, which utilize side information such as the map of the area, or techniques such as Compressive Sensing (CS), Deep Learning (DL), Gaussian Process Regression (GPR), or clustering. These techniques utilize wireless communication parameters such as Received Signal Strength Indicator (RSSI), Channel State Information (CSI), Angle-Delay-Profile (ADP), Angle-of-Departure (AoD), Angle-of-Arrival (AoA), or Time-of-Arrival (ToA) as inputs to estimate the user’s location. The goal of this chapter is to offer a comprehensive understanding of MIMO localization techniques, along with an overview of the challenges and opportunities associated with them. Furthermore, it also aims to provide the theoretical background on channel models and wireless channel parameters required to understand the localization techniques

    Wiometrics: Comparative Performance of Artificial Neural Networks for Wireless Navigation

    Full text link
    Radio signals are used broadly as navigation aids, and current and future terrestrial wireless communication systems have properties that make their dual-use for this purpose attractive. Sub-6 GHz carrier frequencies enable widespread coverage for data communication and navigation, but typically offer smaller bandwidths and limited resolution for precise estimation of geometries, particularly in environments where propagation channels are diffuse in time and/or space. Non-parametric methods have been employed with some success for such scenarios both commercially and in literature, but often with an emphasis on low-cost hardware and simple models of propagation, or with simulations that do not fully capture hardware impairments and complex propagation mechanisms. In this article, we make opportunistic observations of downlink signals transmitted by commercial cellular networks by using a software-defined radio and massive antenna array mounted on a passenger vehicle in an urban non line-of-sight scenario, together with a ground truth reference for vehicle pose. With these observations as inputs, we employ artificial neural networks to generate estimates of vehicle location and heading for various artificial neural network architectures and different representations of the input observation data, which we call wiometrics, and compare the performance for navigation. Position accuracy on the order of a few meters, and heading accuracy of a few degrees, are achieved for the best-performing combinations of networks and wiometrics. Based on the results of the experiments we draw conclusions regarding possible future directions for wireless navigation using statistical methods

    Learning to Localize: A 3D CNN Approach to User Positioning in Massive MIMO-OFDM Systems

    Get PDF

    CSI-fingerprinting Indoor Localization via Attention-Augmented Residual Convolutional Neural Network

    Full text link
    Deep learning has been widely adopted for channel state information (CSI)-fingerprinting indoor localization systems. These systems usually consist of two main parts, i.e., a positioning network that learns the mapping from high-dimensional CSI to physical locations and a tracking system that utilizes historical CSI to reduce the positioning error. This paper presents a new localization system with high accuracy and generality. On the one hand, the receptive field of the existing convolutional neural network (CNN)-based positioning networks is limited, restricting their performance as useful information in CSI is not explored thoroughly. As a solution, we propose a novel attention-augmented residual CNN to utilize the local information and global context in CSI exhaustively. On the other hand, considering the generality of a tracking system, we decouple the tracking system from the CSI environments so that one tracking system for all environments becomes possible. Specifically, we remodel the tracking problem as a denoising task and solve it with deep trajectory prior. Furthermore, we investigate how the precision difference of inertial measurement units will adversely affect the tracking performance and adopt plug-and-play to solve the precision difference problem. Experiments show the superiority of our methods over existing approaches in performance and generality improvement.Comment: 32 pages, Added references in section 2,3; Added explanations for some academic terms; Corrected typos; Added experiments in section 5, previous results unchanged; is under review for possible publicatio
    • …
    corecore