23,092 research outputs found

    The clinical application of PET/CT: a contemporary review

    Get PDF
    The combination of positron emission tomography (PET) scanners and x-ray computed tomography (CT) scanners into a single PET/CT scanner has resulted in vast improvements in the diagnosis of disease, particularly in the field of oncology. A decade on from the publication of the details of the first PET/CT scanner, we review the technology and applications of the modality. We examine the design aspects of combining two different imaging types into a single scanner, and the artefacts produced such as attenuation correction, motion and CT truncation artefacts. The article also provides a discussion and literature review of the applications of PET/CT to date, covering detection of tumours, radiotherapy treatment planning, patient management, and applications external to the field of oncology

    Image quality and dosimetry of a dual source computed tomography scanner with special emphasis on radiation dose of lung in a chest examination

    Get PDF
    The purpose of the current study was to evaluate the Dual Source Computed Tomography scanner in terms of Image quality and dosimetry with special emphasis of radiation dose of lung in a Chest examination.Zielsetzung der Studie war die Evaluation eines Dual-Source-Computertomographen hinsichtlich Bildqualität und Dosimetrie mit speziellem Fokus auf der Lungendosis in Thoraxuntersuchungen

    A LEKID-based CMB instrument design for large-scale observations in Greenland

    Get PDF
    We present the results of a feasibility study, which examined deployment of a ground-based millimeter-wave polarimeter, tailored for observing the cosmic microwave background (CMB), to Isi Station in Greenland. The instrument for this study is based on lumped-element kinetic inductance detectors (LEKIDs) and an F/2.4 catoptric, crossed-Dragone telescope with a 500 mm aperture. The telescope is mounted inside the receiver and cooled to < 4<\,4 K by a closed-cycle 4^4He refrigerator to reduce background loading on the detectors. Linearly polarized signals from the sky are modulated with a metal-mesh half-wave plate that is rotated at the aperture stop of the telescope with a hollow-shaft motor based on a superconducting magnetic bearing. The modular detector array design includes at least 2300 LEKIDs, and it can be configured for spectral bands centered on 150~GHz or greater. Our study considered configurations for observing in spectral bands centered on 150, 210 and 267~GHz. The entire polarimeter is mounted on a commercial precision rotary air bearing, which allows fast azimuth scan speeds with negligible vibration and mechanical wear over time. A slip ring provides power to the instrument, enabling circular scans (360 degrees of continuous rotation). This mount, when combined with sky rotation and the latitude of the observation site, produces a hypotrochoid scan pattern, which yields excellent cross-linking and enables 34\% of the sky to be observed using a range of constant elevation scans. This scan pattern and sky coverage combined with the beam size (15~arcmin at 150~GHz) makes the instrument sensitive to 5<ℓ<10005 < \ell < 1000 in the angular power spectra

    Multi-Energy Blended CBCT Spectral Imaging Using a Spectral Modulator with Flying Focal Spot (SMFFS)

    Full text link
    Cone-beam CT (CBCT) spectral imaging has great potential in medical and industrial applications, but it is very challenging as scatter and spectral effects are seriously twisted. In this work, we present the first attempt to develop a stationary spectral modulator with flying focal spot (SMFFS) technology as a promising, low-cost approach to accurately solving the X-ray scattering problem and physically enabling spectral imaging in a unified framework, and with no significant misalignment in data sampling of spectral projections. Based on an in-depth analysis of optimal energy separation from different combinations of modulator materials and thicknesses, we present a practical design of a mixed two-dimensional spectral modulator that can generate multi-energy blended CBCT spectral projections. To deal with the twisted scatter-spectral challenge, we propose a novel scatter-decoupled material decomposition (SDMD) method by taking advantage of a scatter similarity in SMFFS. A Monte Carlo simulation is conducted to validate the strong similarity of X-ray scatter distributions across the flying focal spot positions. Both numerical simulations using a clinical abdominal CT dataset, and physics experiments on a tabletop CBCT system using a GAMMEX multi-energy CT phantom, are carried out to demonstrate the feasibility of our proposed SDMD method for CBCT spectral imaging with SMFFS. In the physics experiments, the mean relative errors in selected ROI for virtual monochromatic image (VMI) are 0.9\% for SMFFS, and 5.3\% and 16.9\% for 80/120 kV dual-energy cone-beam scan with and without scatter correction, respectively. Our preliminary results show that SMFFS can effectively improve the quantitative imaging performance of CBCT.Comment: 10 pages, 13 figure

    Scanning protocol optimisation for dual-energy computed tomography angiography in peripheral artery stenting

    Get PDF
    In this thesis, a novel approach has been proposed to evaluate the optimal scanning protocol for dual energy computed tomography angiography in peripheral arterial stents. This new approach includes evaluation of different protocols and image reconstructions at different energy level, development of the optimal protocol based on lowest radiation dose and acceptable image quality. Furthermore, an optimal contrast medium protocol has been identified in imaging peripheral arterial disease

    Snowmass CF1 Summary: WIMP Dark Matter Direct Detection

    Get PDF
    As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the current status and projected sensitivity of WIMP direct detection experiments worldwide, (b) motivate WIMP dark matter searches over a broad parameter space by examining a spectrum of WIMP models, (c) establish a community consensus on the type of experimental program required to explore that parameter space, and (d) identify the common infrastructure required to practically meet those goals.Comment: Snowmass CF1 Final Summary Report: 47 pages and 28 figures with a 5 page appendix on instrumentation R&
    • …
    corecore