4,320 research outputs found

    Direct usage of photovoltaic solar panels to supply a freezer motor with variable DC input voltage

    Get PDF
    In this paper, a single-phase photovoltaic (PV) inverter fed by a boost converter to supply a freezer motor with variable DC input is investigated. The proposed circuit has two stages. Firstly, the DC output of the PV panel that varies between 150 and 300 V will be applied to the boost converter. The boost converter will boost the input voltage to a fixed 300 V DC. Next, this voltage is supplied to the single-phase full-bridge inverter to obtain 230 V AC. In the end, The output of the inverter will feed a freezer motor. The PV panels can be stand-alone or grid-connected. The grid-connected PV is divided into two categories, such as with a transformer and without a transformer, a transformer type has galvanic isolation resulting in increasing the security and also provides no further DC current toward the grid, but it is expensive, heavy and bulky. The transformerless type holds high efficiency and it is cheaper, but it suffers from leakage current between PV and the grid. This paper proposes a stand-alone direct use of PV to supply a freezer; therefore, no grid connection will result in no leakage current between the PV and Grid. The proposed circuit has some features such as no filtering circuit at the output of the inverter, no battery in the system, DC-link instead of AC link that reduces no-loads, having a higher efficiency, and holding enough energy in the DC-link capacitor to get the motor started. The circuit uses no transformers, thus, it is cheaper and has a smaller size. In addition, the system does not require a complex pulse width modulation (PWM) technique, because the motor can operate with a pulsed waveform. The control strategy uses the PWM signal with the desired timing. With this type of square wave, the harmonics (5th and 7th) of the voltage are reduced. The experimental and simulation results are presented to verify the feasibility of the proposed strategy

    Integrated series transformer in cascade converters for photovoltaic energy systems

    Get PDF
    This paper proposes a novel configuration for photovoltaic applications based on a cascade converter topology. The series connection between modules is achieved through the magnetic core of the integrated series transformer, therefore an inherent isolation is provided without the requirement of a dc-dc conversion stage. Such isolation approach between each module allows operation at high voltage levels without harming the PV panel insulation. The main principles that support this proposal, as well as, simulation results are presented to validate the configuration.Peer ReviewedPostprint (author's final draft

    Power Quality Improvement and Low Voltage Ride through Capability in Hybrid Wind-PV Farms Grid-Connected Using Dynamic Voltage Restorer

    Get PDF
    © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission.This paper proposes the application of a dynamic voltage restorer (DVR) to enhance the power quality and improve the low voltage ride through (LVRT) capability of a three-phase medium-voltage network connected to a hybrid distribution generation system. In this system, the photovoltaic (PV) plant and the wind turbine generator (WTG) are connected to the same point of common coupling (PCC) with a sensitive load. The WTG consists of a DFIG generator connected to the network via a step-up transformer. The PV system is connected to the PCC via a two-stage energy conversion (dc-dc converter and dc-ac inverter). This topology allows, first, the extraction of maximum power based on the incremental inductance technique. Second, it allows the connection of the PV system to the public grid through a step-up transformer. In addition, the DVR based on fuzzy logic controller is connected to the same PCC. Different fault condition scenarios are tested for improving the efficiency and the quality of the power supply and compliance with the requirements of the LVRT grid code. The results of the LVRT capability, voltage stability, active power, reactive power, injected current, and dc link voltage, speed of turbine, and power factor at the PCC are presented with and without the contribution of the DVR system.Peer reviewe

    The development of a resource-efficient photovoltaic system

    No full text
    This paper presents the measures taken in the demonstration of the photovoltaic case study developed within the European project ‘Towards zero waste in industrial networks’ (Zerowin), integrating the D4R (Design for recycling, repair, refurbishment and reuse) criteria at both system and industrial network level. The demonstration is divided into three phases. The first phase concerns the development of a D4R photovoltaic concept, the second phase focused on the development of a specific component of photovoltaic systems and the third phase was the demonstration of the D4R design in two complete photovoltaic systems (grid-connected and stand-alone). This paper includes a description of the installed photovoltaic systems, including a brief summary at component level of the lithium ion battery system and the D4R power conditioning system developed for the pilot installations. Additionally, industrial symbioses within the network associated with the photovoltaic systems and the production model for the network are described

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    A Novel Reduced Components Model Predictive Controlled Multilevel Inverter for Grid-Tied Applications

    Get PDF
    This paper presents an improved single-phase Multilevel Inverter (MLI) which is conceptualized to reduce power switches along with separate DC voltage sources. Compared with recent modular topologies, the proposed MLI employs a reduced number of components. The proposed inverter consists of a combination of two circuits, i.e., the level generation and polarity generation parts. The level generation part is used to synthesize different output voltage levels, while the polarity inversion is performed by a~conventional H-bridge circuit. The performance of the proposed topology has been studied using s single-phase seven-level inverter, which utilizes seven power switches and three independent DC voltage sources. Model Predictive Control (MPC) is applied to inject a sinusoidal current into the utility grid which exhibits low Total Harmonic Distortion (THD). Tests, including a~change in grid current amplitude as well as operation under variation in Power Factor (PF), have been performed to validate the good performance obtained using MPC. The effectiveness of the proposed seven-level inverter has been verified theoretically using MATLAB Simulink. In addition, Real-Time (RT) validation using the dSPACE-CP1103 has been performed to confirm the system performance and system operation using digital platforms. Simulation and RT results show improved THD at 1.23% of injected current

    New Topologies and Advanced Control of Power Electronic Converters for Renewable Energy based Microgrids

    Get PDF
    Solar energy-based microgrids are increasingly promising due to their many features, such as being environmentally friendly and having low operating costs. Power electronic converters, filters, and transformers are the key components to integrate the solar photovoltaic (PV) systems with the microgrids. The power electronic converters play an important role to reduce the size of the filter circuit and eliminate the use of the bulky and heavy traditional power frequency step-up transformer. These power converters also play a vital role to integrate the energy storage systems such as batteries and the superconducting magnetic energy storage (SMES) unit in a solar PV power-based microgrid. However, the performance of these power converters depends upon the switching technique and the power converter configuration. The switching techniques can improve the power quality, i.e. lower total harmonic distortion at the converter output waveform, reduce the converter power loss, and can effectively utilize the dc bus voltage, which helps to improve the power conversion efficiency of the power electronic converter. The power converter configuration can reduce the size of the power converter and make the power conversion system more efficient. In addition to the advanced switching technique, a supervisory control can also be integrated with these power converters to ensure the optimal power flow within the microgrid. First, this thesis reviews different existing power converter topologies with their switching techniques and control strategies for the grid integration of solar PV systems. To eliminate the use of the bulky and heavy line frequency step-up transformer to integrate solar PV systems to medium voltage grids, the high frequency magnetic linkbased medium voltage power converter topologies are discussed and compared based on their performance parameters. Moreover, switching and conduction losses are calculated to compare the performance of the switching techniques for the magnetic-linked power converter topologies. In this thesis, a new pulse width modulation technique has been proposed to integrate the SMES system with the solar PV system-based microgrid. The pulse width modulation technique is designed to provide reactive power into the network in an effective way. The modulation technique ensures lower total harmonic distortion (THD), lower switching loss, and better utilization of dc-bus voltage. The simulation and experimental results show the effectiveness of the proposed pulse width modulation technique. In this thesis, an improved version of the previously proposed switching technique has been designed for a transformer-less PV inverter. The improved switching technique can ensure effective active power flow into the network. A new switching scheme has been proposed for reactive power control to avoid unnecessary switching faced by the traditional switching technique in a transformer-less PV inverter. The proposed switching technique is based on the peak point value of the grid current and ensures lower switching loss compared to other switching techniques. In this thesis, a new magnetic-linked multilevel inverter has been designed to overcome the issues faced by the two-level inverters and traditional multilevel inverters. The proposed multilevel inverter utilizes the same number of electronic switches but fewer capacitors compared to the traditional multilevel inverters. The proposed multilevel inverter solves the capacitor voltage balancing and utilizes 25% more of the dc bus voltage compared to the traditional multilevel inverter, which reduces the power rating of the dc power source components and also extends the input voltage operating range of the inverter. An improved version magnetic-linked multilevel inverter is proposed in this thesis with a model predictive control technique. This multilevel inverter reduces both the number of switches and capacitors compared to the traditional multilevel inverter. This multilevel inverter also solves the capacitor voltage balancing issue and utilizes 50% more of the dc bus voltage compared to the traditional multilevel inverter. Finally, an energy management system has been designed for the developed power converter and control to achieve energy resiliency and minimum operating cost of the microgrid. The model predictive control-based energy management system utilizes the predicted load data, PV insolation data from web service, electricity price data, and battery state of charge data to select the battery charging and discharging pattern over the day. This model predictive control-based supervisory control with the advanced power electronic converter and control makes the PV energy-based microgrid more efficient and reliable

    Dispersed storage and generation case studies

    Get PDF
    Three installations utilizing separate dispersed storage and generation (DSG) technologies were investigated. Each of the systems is described in costs and control. Selected institutional and environmental issues are discussed, including life cycle costs. No unresolved technical, environmental, or institutional problems were encountered in the installations. The wind and solar photovoltaic DSG were installed for test purposes, and appear to be presently uneconomical. However, a number of factors are decreasing the cost of DSG relative to conventional alternatives, and an increased DSG penetration level may be expected in the future

    Developed cascaded multilevel inverter topology to minimise the number of circuit devices and voltage stresses of switches

    Get PDF
    In this study, a novel structure for cascade multilevel inverter is presented. The proposed inverter can generate all possible DC voltage levels with the value of positive and negative. The proposed structure results in reduction of switches number, relevant gate driver circuits and also the installation area and inverter cost. The suggested inverter can be used as symmetric and asymmetric structures. Comparing the peak inverse voltage and losses of the proposed inverter with conventional multilevel inverters show the superiority of the proposed converter. The operation and good performance of the proposed multilevel inverter have been verified by the simulation results of a single-phase nine-level symmetric and 17-level asymmetric multilevel inverter and experimental results of a nine-level and 17-level inverters. Simulation and experimental results confirmed the validity and effectiveness performance of the proposed inverter
    corecore