458 research outputs found

    PlaneRecTR: Unified Query Learning for 3D Plane Recovery from a Single View

    Full text link
    3D plane recovery from a single image can usually be divided into several subtasks of plane detection, segmentation, parameter estimation and possibly depth estimation. Previous works tend to solve this task by either extending the RCNN-based segmentation network or the dense pixel embedding-based clustering framework. However, none of them tried to integrate above related subtasks into a unified framework but treat them separately and sequentially, which we suspect is potentially a main source of performance limitation for existing approaches. Motivated by this finding and the success of query-based learning in enriching reasoning among semantic entities, in this paper, we propose PlaneRecTR, a Transformer-based architecture, which for the first time unifies all subtasks related to single-view plane recovery with a single compact model. Extensive quantitative and qualitative experiments demonstrate that our proposed unified learning achieves mutual benefits across subtasks, obtaining a new state-of-the-art performance on public ScanNet and NYUv2-Plane datasets. Codes are available at https://github.com/SJingjia/PlaneRecTR.Comment: To be published in Proceedings of IEEE International Conference on Computer Vision (ICCV 2023). Camera Ready Version. Codes: https://github.com/SJingjia/PlaneRecTR , Video: https://youtu.be/YBB7totHGJ

    RoSI: Recovering 3D Shape Interiors from Few Articulation Images

    Full text link
    The dominant majority of 3D models that appear in gaming, VR/AR, and those we use to train geometric deep learning algorithms are incomplete, since they are modeled as surface meshes and missing their interior structures. We present a learning framework to recover the shape interiors (RoSI) of existing 3D models with only their exteriors from multi-view and multi-articulation images. Given a set of RGB images that capture a target 3D object in different articulated poses, possibly from only few views, our method infers the interior planes that are observable in the input images. Our neural architecture is trained in a category-agnostic manner and it consists of a motion-aware multi-view analysis phase including pose, depth, and motion estimations, followed by interior plane detection in images and 3D space, and finally multi-view plane fusion. In addition, our method also predicts part articulations and is able to realize and even extrapolate the captured motions on the target 3D object. We evaluate our method by quantitative and qualitative comparisons to baselines and alternative solutions, as well as testing on untrained object categories and real image inputs to assess its generalization capabilities

    X-PDNet: Accurate Joint Plane Instance Segmentation and Monocular Depth Estimation with Cross-Task Distillation and Boundary Correction

    Full text link
    Segmentation of planar regions from a single RGB image is a particularly important task in the perception of complex scenes. To utilize both visual and geometric properties in images, recent approaches often formulate the problem as a joint estimation of planar instances and dense depth through feature fusion mechanisms and geometric constraint losses. Despite promising results, these methods do not consider cross-task feature distillation and perform poorly in boundary regions. To overcome these limitations, we propose X-PDNet, a framework for the multitask learning of plane instance segmentation and depth estimation with improvements in the following two aspects. Firstly, we construct the cross-task distillation design which promotes early information sharing between dual-tasks for specific task improvements. Secondly, we highlight the current limitations of using the ground truth boundary to develop boundary regression loss, and propose a novel method that exploits depth information to support precise boundary region segmentation. Finally, we manually annotate more than 3000 images from Stanford 2D-3D-Semantics dataset and make available for evaluation of plane instance segmentation. Through the experiments, our proposed methods prove the advantages, outperforming the baseline with large improvement margins in the quantitative results on the ScanNet and the Stanford 2D-3D-S dataset, demonstrating the effectiveness of our proposals.Comment: Accepted to BMVC 202

    3D detection of roof sections from a single satellite image and application to LOD2-building reconstruction

    Full text link
    Reconstructing urban areas in 3D out of satellite raster images has been a long-standing and challenging goal of both academical and industrial research. The rare methods today achieving this objective at a Level Of Details 22 rely on procedural approaches based on geometry, and need stereo images and/or LIDAR data as input. We here propose a method for urban 3D reconstruction named KIBS(\textit{Keypoints Inference By Segmentation}), which comprises two novel features: i) a full deep learning approach for the 3D detection of the roof sections, and ii) only one single (non-orthogonal) satellite raster image as model input. This is achieved in two steps: i) by a Mask R-CNN model performing a 2D segmentation of the buildings' roof sections, and after blending these latter segmented pixels within the RGB satellite raster image, ii) by another identical Mask R-CNN model inferring the heights-to-ground of the roof sections' corners via panoptic segmentation, unto full 3D reconstruction of the buildings and city. We demonstrate the potential of the KIBS method by reconstructing different urban areas in a few minutes, with a Jaccard index for the 2D segmentation of individual roof sections of 88.55%88.55\% and 75.21%75.21\% on our two data sets resp., and a height's mean error of such correctly segmented pixels for the 3D reconstruction of 1.601.60 m and 2.062.06 m on our two data sets resp., hence within the LOD2 precision range
    • …
    corecore