470 research outputs found

    Channel Estimation in Multicarrier Communication Systems

    Get PDF
    The data rate and spectrum efficiency of wireless mobile communications have been significantly improved over the last decade or so. Recently, the advanced systems such as 3GPP LTE and terrestrial digital TV broadcasting have been sophisticatedly developed using OFDM and CDMA technology. In general, most mobile communication systems transmit bits of information in the radio space to the receiver. The radio channels in mobile radio systems are usually multipath fading channels, which cause inter-symbol interference (ISI) in the received signal. To remove ISI from the signal, there is a need of strong equalizer which requires knowledge on the channel impulse response (CIR).This is primarily provided by a separate channel estimator. Usually the channel estimation is based on the known sequence of bits, which is unique for a certain transmitter and which is repeated in every transmission burst. Thus, the channel estimator is able to estimate CIR for each burst separately by exploiting the known transmitted bits and the corresponding received samples. In this thesis we investigate and compare various efficient channel estimation schemes for OFDM systems which can also be extended to MC DS-CDMA systems.The channel estimation can be performed by either inserting pilot tones into all subcarriers of OFDM symbols with a specific period or inserting pilot tones into each OFDM symbol. Two major types of pilot arrangement such as block type and comb type pilot have been focused employing Least Square Error (LSE) and Minimum Mean Square Error (MMSE) channel estimators. Block type pilot sub-carriers is especially suitable for slow-fading radio channels whereas comb type pilots provide better resistance to fast fading channels. Also comb type pilot arrangement is sensitive to frequency selectivity when comparing to block type arrangement. However, there is another supervised technique called Implicit Training (IT) based channel estimation which exploits the first order statistics in the received data, induced by superimposing periodic training sequences with good correlation properties, along with the information symbols. Hence, the need for additional time slots for training the equalizer is avoided. The performance of the estimators is presented in terms of the mean square estimation error (MSEE) and bit error rate (BER)

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Software Implementation of Orthogonal Frequency Division Multiplexing (OFDM)Scheme for Mobile Radio Channel

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a transmission technique which ensures efficient utilization of the spectrum by allowing overlap of carriers. OFDM is a combination of modulation and multiplexing that is used in the transmission of information and data. Compared with the other wireless transmission techniques like Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), OFDM has numerous advantages like high spectral density, its robustness to channel fading, its ability to overcome several radio impairment factors such as effect of AWGN, impulse noise, multipath fading, etc. Due to this it finds wide application in Digital Audio Broadcasting (DAB), Digital Video Broadcasting (DVB), and Wireless LAN. Most of the wireless LAN standards like IEEE 802.11a or IEEE 802.11g use the OFDM as the main multiplexing scheme for better use of spectrum. In fact in the 4G telecommunication system OFDMA is the backbone of it. This project deals with the software simulation of this OFDM system in a mobile radio channel using the software tools of MATLAB® and SIMULINK®. From this simulation the performance of OFDM system in mobile radio channel is studied. Apart from this we also compare the OFDM system performance with the performance of the DS-CDMA system in the mobile radio channel

    Sparsity Enhanced Decision Feedback Equalization

    Full text link
    For single-carrier systems with frequency domain equalization, decision feedback equalization (DFE) performs better than linear equalization and has much lower computational complexity than sequence maximum likelihood detection. The main challenge in DFE is the feedback symbol selection rule. In this paper, we give a theoretical framework for a simple, sparsity based thresholding algorithm. We feed back multiple symbols in each iteration, so the algorithm converges fast and has a low computational cost. We show how the initial solution can be obtained via convex relaxation instead of linear equalization, and illustrate the impact that the choice of the initial solution has on the bit error rate performance of our algorithm. The algorithm is applicable in several existing wireless communication systems (SC-FDMA, MC-CDMA, MIMO-OFDM). Numerical results illustrate significant performance improvement in terms of bit error rate compared to the MMSE solution

    Peak-to-Average-Power-Ratio (PAPR) Reduction Techniques for Orthogonal-Frequency-Division- Multiplexing (OFDM) Transmission

    Get PDF
    Wireless communication has experienced an incredible growth in the last decade. Two decades ago,the number of mobile subscribers was less than 1% of the world\u27s population. As of 2011, the number of mobile subscribers has increased tremendously to 79.86% of the world\u27s population. Robust and high-rate data transmission in mobile environments faces severe problems due to the time-variant channel conditions, multipath fading and shadow fading. Fading is the main limitation on wireless communication channels. Frequency selective interference and fading, such as multipath fading, is a bandwidth bottleneck in the last mile which runs from the access point to the user. The last mile problem in wireless communication networks is caused by the environment of free space channels through which the signal propagates. Orthogonal Frequency Division Multiplexing (OFDM) is a promising modulation and multiplexing technique due to its robustness against multipath fading. Nevertheless, OFDM suffers from high Peak-to-Average- Power-Ratio (PAPR), which results in a complex OFDM signal. In this research, reduction of PAPR considering the out-of-band radiation and the regeneration of the time-domain signal peaks caused by filtering has been studied and is presented. Our PAPR reduction was 30% of the Discrete Fourier Transform (DFT) with Interleaved Frequency Division Multiple Access (IFDMA) utilizing Quadrature Phase Shift Keying (QPSK) and varying the roll-off factor. We show that pulse shaping does not affect the PAPR of Localized Frequency Division Multiple Access (LFDMA) as much as it affects the PAPR of IFDMA. Therefore, IFDMA has an important trade-off relationship between excess bandwidth and PAPR performance, since excess bandwidth increases as the roll-off factor increases. In addition, we studied a low complexity clipping scheme, applicable to IFDMA uplink and OFDM downlink systems for PAPR reduction. We show that the performance of the PAPR of the Interleaved-FDMA scheme is better than traditional OFDMA for the uplink transmission system. Our reduction of PAPR is 53% when IFDMA is used instead of OFDMA in the uplink direction. Furthermore, we also examined an important trade-off relationship between clipping distortion and quantization noise when the clipping scheme is used for OFDM downlink systems. Our results show a significant reduction in the PAPR and the out-of-band radiation caused by clipping for OFDM downlink transmission system

    Effects of Cyclic Prefix Jamming Versus Noise Jamming in OFDM Signals

    Get PDF
    Signal jamming of an orthogonal frequency-division multiplexing (OFDM) signal is simulated in MATLAB. Two different means of jamming are used to see, which is a more efficient way to disrupt a signal using the same signal power. The first way is a basic additive white Gaussian noise (AWGN) jammer that equally jams the entire signal. The second way is an AWGN jammer that targets only the cyclic prefix (CP) of the signal. These two methods of jamming are simulated using different channel models and unknowns to get varying results. The three channel models used in the simulations are the no channel case, the simple multipath case, and the fading multipath case. The general trend shows that as the channel model becomes more complex, the difference in the effectiveness of each jamming technique becomes less. The unknown in this research is the symbol-time delay. Since OFDM signals are characterized by multipath reception, the signal arrives at a symbol-time delay which is known or unknown to the jamming signal and the receiver. Realistically, the symbol-time delay is unknown to each and in that case, a Maximum Likelihood (ML) Estimator is used to find the estimated symbol-time delay. This research simulates the symbol-time delay as a known and an unknown at the jammer and receiver. The general trend shows that jamming the cyclic prefix is more effective than noise jamming when the symbol-time delay is unknown to the receiver

    Implementação de um sistema de comunicações móveis para o Uplink

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesÉ evidente que actualmente cada vez mais a internet móvel está presente na vida das sociedades. Hoje em dia é relativamente fácil estar ligado à internet sempre que se quiser, independentemente do lugar onde se encontra (conceito: anytime and anywhere). Desta forma existe um número crescente de utilizadores que acedem a serviços e aplicações interactivas a partir dos seus terminais móveis. Há, portanto, uma necessidade de adaptar o mundo das telecomunicações a esta nova realidade, para isso é necessário implementar novas arquitecturas que sejam capazes de fornecer maior largura de banda e reduzir os atrasos das comunicações, maximizando a utilização dos recursos disponíveis do meio/rede e melhorando assim a experiência do utilizador final. O LTE representa uma das tecnologias mais avançadas e de maior relevância para o acesso sem fios em banda larga de redes celulares. OFDM é a tecnologia base que está por traz da técnica de modulação, bem como as tecnologias adjacentes, OFDMA e SC-FDMA, usadas especificamente no LTE para a comunicação de dados descendente (downlink) ou ascendente (uplink), respectivamente. A implementação de múltiplas antenas em ambos os terminais, potenciam ainda mais o aumento da eficiência espectral do meio rádio permitindo atingir grandes taxas de transmissão de dados. Nesta dissertação é feito o estudo, implementação e avaliação do desempenho da camada física (camada 1 do modelo OSI) do LTE, no entanto o foco será a comunicação de dados ascendente e a respectiva técnica de modelação, SC-FDMA. Foi implementada uma plataforma de simulação baseada nas especificações do LTE UL onde foram considerandos diferentes esquemas de antenas. Particularmente para o esquema MIMO, usou-se a técnica de codificação no espaço-frequência proposta por Alamouti. Foram também implementados vários equalizadores. Os resultados provenientes da simulação demonstram tanto a eficiência dos diversos modos de operação em termos da taxa de erro, como o excelente funcionamento de processos de mapeamento e equalização, que visam melhorar a taxa de recepção de dados.It is clear that mobile Internet is present in the life of societies. Nowadays it is relatively easy to be connected to the internet whenever you want, no matter where you are (concept: anytime and anywhere). Thus, there are a growing number of users accessing interactive services and applications from their handsets. Therefore, there is a need to adapt the world of telecommunications to this new reality, for that it is necessary to implement new architectures that are able to provide higher bandwidth and reduce communication delays, maximizing use of available resources in the medium/network and thereby improving end-user experience. LTE represents one of the most advanced architectures and most relevant to wireless broadband cellular networks. OFDM is the technology that is behind the modulation technique and the underlying technologies, OFDMA and SCFDMA, used specifically in LTE for data communication downward (downlink) or upward (uplink), respectively. The implementation of multiple antennas at both ends further potentiate the increase of spectral efficiency allowing to achieve high rates of data transmission. In this dissertation is done the study, implementation and performance evaluation of the physical layer (OSI Layer 1) of the LTE, but the focus will be communication and its upstream data modeling technique, SC-FDMA. We implemented a simulation platform based on LTE UL specifications where were considered different antenna schemes. Particularly for the MIMO scheme, we used the technique of space-frequency coding proposed by Alamouti. We also implemented several equalizers. The results from the simulation demonstrate both the efficiency of different modes of operation in terms of error rate, as the excellent operation of mapping processes and equalization, designed to improve the rate of receiving data

    Lightly synchronized Multipacket Reception in Machine-Type Communications Networks

    Get PDF
    Machine Type Communication (MTC) applications were designed to monitor and control elements of our surroundings and environment. MTC applications have a different set of requirements compared to the traditional communication devices, with Machine to Machine (M2M) data being mostly short, asynchronous, bursty and sometimes requiring end-to-end delays below 1ms. With the growth of MTC, the new generation of mobile communications has to be able to present different types of services with very different requirements, i.e. the same network has to be capable of "supplying" connection to the user that just wants to download a video or use social media, allowing at the same time MTC that has completely different requirements, without deteriorating both experiences. The challenges associated to the implementation of MTC require disruptive changes at the Physical (PHY) and Medium Access Control (MAC) layers, that lead to a better use of the spectrum available. The orthogonality and synchronization requirements of the PHY layer of current Long Term Evolution Advanced (LTE-A) radio access network (based on glsofdm and Single Carrier Frequency Domain Equalization (SC-FDE)) are obstacles for this new 5th Generation (5G) architecture. Generalized Frequency Division Multiplexing (GFDM) and other modulation techniques were proposed as candidates for the 5G PHY layer, however they also suffer from visible degradation when the transmitter and receiver are not synchronized, leading to a poor performance when collisions occur in an asynchronous MAC layer. This dissertation addresses the requirements of M2M traffic at the MAC layer applying multipacket reception (MPR) techniques to handle the bursty nature of the traffic and synchronization tones and optimized back-off approaches to reduce the delay. It proposes a new MAC protocol and analyses its performance analytically considering an SC-FDE modulation. The models are validated using a system level cross-layer simulator developed in MATLAB, which implements the MAC protocol and applies PHY layer performance models. The results show that the MAC’s latency depends mainly on the number of users and the load of each user, and can be controlled using these two parameters
    corecore