1,672 research outputs found

    The value of theoretical multiplicity for steering transitions towards sustainability

    Get PDF
    Transition management, as a theory of directing structural societal changes towards sustainable system innovations, has become a major topic in scientific research over the last years. In this paper we focus on the question how transitions towards sustainability can be steered, governed or managed, in particular by governmental actors. We suggest an approach of theoretical multiplicity, arguing that multiple theories will be needed simultaneously for dealing with the complex societal sustainability issues. Therefore, we address the steering question by theoretically comparing transition management theory to a number of related theories on societal change and intervention, such as multi-actor collaboration, network governance, configuration management, policy agenda setting, and adaptive management. We conclude that these related theories put the managerial assumptions of transition management into perspective, by adding other steering roles and leadership mechanisms to the picture. Finally we argue that new modes of steering inevitable have consequences for the actual governance institutions. New ways of governing change ask for change within governance systems itself and vice versa. Our argument for theoretical multiplicity implicates the development of multiple, potentially conflicting, governance capacitie

    Reactive mission and motion planning with deadlock resolution avoiding dynamic obstacles

    Get PDF
    In the near future mobile robots, such as personal robots or mobile manipulators, will share the workspace with other robots and humans. We present a method for mission and motion planning that applies to small teams of robots performing a task in an environment with moving obstacles, such as humans. Given a mission specification written in linear temporal logic, such as patrolling a set of rooms, we synthesize an automaton from which the robots can extract valid strategies. This centralized automaton is executed by the robots in the team at runtime, and in conjunction with a distributed motion planner that guarantees avoidance of moving obstacles. Our contribution is a correct-by-construction synthesis approach to multi-robot mission planning that guarantees collision avoidance with respect to moving obstacles, guarantees satisfaction of the mission specification and resolves encountered deadlocks, where a moving obstacle blocks the robot temporally. Our method provides conditions under which deadlock will be avoided by identifying environment behaviors that, when encountered at runtime, may prevent the robot team from achieving its goals. In particular, (1) it identifies deadlock conditions; (2) it is able to check whether they can be resolved; and (3) the robots implement the deadlock resolution policy locally in a distributed manner. The approach is capable of synthesizing and executing plans even with a high density of dynamic obstacles. In contrast to many existing approaches to mission and motion planning, it is scalable with the number of moving obstacles. We demonstrate the approach in physical experiments with walking humanoids moving in 2D environments and in simulation with aerial vehicles (quadrotors) navigating in 2D and 3D environments.Boeing CompanyUnited States. Office of Naval Research. Multidisciplinary University Research Initiative. SMARTS (N00014-09-1051)United States. Office of Naval Research (N00014-12-1-1000)National Science Foundation (U.S.). Expeditions in Computer Augmented Program Engineerin

    A Mechanism for Dynamic Coordination of Multiple Robots

    Get PDF
    In this paper, we present a mechanism for coordinating multiple robots in the execution of cooperative tasks. The basic idea in the paper is to assign to each robot in the team, a role that determines its actions during the cooperation. The robots dynamically assume and exchange roles in a synchronized manner in order to perform the task successfully, adapting to unexpected events in the environment. We model this mechanism using a hybrid systems framework and apply it in different cooperative tasks: cooperative manipulation and cooperative search and transportation. Simulations and real experiments demonstrating the effectiveness of the proposed mechanism are presented

    Decentralized Multi-Robot Social Navigation in Constrained Environments via Game-Theoretic Control Barrier Functions

    Full text link
    We present an approach to ensure safe and deadlock-free navigation for decentralized multi-robot systems operating in constrained environments, including doorways and intersections. Although many solutions have been proposed to ensure safety, preventing deadlocks in a decentralized fashion with global consensus remains an open problem. We first formalize the objective as a non-cooperative, non-communicative, partially observable multi-robot navigation problem in constrained spaces with multiple conflicting agents, which we term as social mini-games. Our approach to ensuring safety and liveness rests on two novel insights: (i) deadlock resolution is equivalent to deriving a mixed-Nash equilibrium solution to a social mini-game and (ii) this mixed-Nash strategy can be interpreted as an analogue to control barrier functions (CBFs), that can then be integrated with standard CBFs, inheriting their safety guarantees. Together, the standard CBF along with the mixed-Nash CBF analogue preserves both safety and liveness. We evaluate our proposed game-theoretic navigation algorithm in simulation as well on physical robots using F1/10 robots, a Clearpath Jackal, as well as a Boston Dynamics Spot in a doorway, corridor intersection, roundabout, and hallway scenario. We show that (i) our approach results in safer and more efficient navigation compared to local planners based on geometrical constraints, optimization, multi-agent reinforcement learning, and auctions, (ii) our deadlock resolution strategy is the smoothest in terms of smallest average change in velocity and path deviation, and most efficient in terms of makespan (iii) our approach yields a flow rate of 2.8 - 3.3 (ms)^{-1 which is comparable to flow rate in human navigation at 4 (ms)^{-1}.Comment: arXiv admin note: text overlap with arXiv:2306.0881

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types
    • …
    corecore