32 research outputs found

    Robust Surgical Tools Detection in Endoscopic Videos with Noisy Data

    Full text link
    Over the past few years, surgical data science has attracted substantial interest from the machine learning (ML) community. Various studies have demonstrated the efficacy of emerging ML techniques in analysing surgical data, particularly recordings of procedures, for digitizing clinical and non-clinical functions like preoperative planning, context-aware decision-making, and operating skill assessment. However, this field is still in its infancy and lacks representative, well-annotated datasets for training robust models in intermediate ML tasks. Also, existing datasets suffer from inaccurate labels, hindering the development of reliable models. In this paper, we propose a systematic methodology for developing robust models for surgical tool detection using noisy data. Our methodology introduces two key innovations: (1) an intelligent active learning strategy for minimal dataset identification and label correction by human experts; and (2) an assembling strategy for a student-teacher model-based self-training framework to achieve the robust classification of 14 surgical tools in a semi-supervised fashion. Furthermore, we employ weighted data loaders to handle difficult class labels and address class imbalance issues. The proposed methodology achieves an average F1-score of 85.88\% for the ensemble model-based self-training with class weights, and 80.88\% without class weights for noisy labels. Also, our proposed method significantly outperforms existing approaches, which effectively demonstrates its effectiveness

    Kontextsensitivität für den Operationssaal der Zukunft

    Get PDF
    The operating room of the future is a topic of high interest. In this thesis, which is among the first in the recently defined field of Surgical Data Science, three major topics for automated context awareness in the OR of the future will be examined: improved surgical workflow analysis, the newly developed event impact factors, and as application combining these and other concepts the unified surgical display.Der Operationssaal der Zukunft ist ein Forschungsfeld von großer Bedeutung. In dieser Dissertation, die eine der ersten im kürzlich definierten Bereich „Surgical Data Science“ ist, werden drei Themen für die automatisierte Kontextsensitivität im OP der Zukunft untersucht: verbesserte chirurgische Worflowanalyse, die neuentwickelten „Event Impact Factors“ und als Anwendungsfall, der diese Konzepte mit anderen kombiniert, das vereinheitlichte chirurgische Display

    A semi-supervised Teacher-Student framework for surgical tool detection and localization

    Get PDF
    Surgical tool detection in minimally invasive surgery is an essential part of computer-assisted interventions. Current approaches are mostly based on supervised methods requiring large annotated datasets. However, labelled datasets are often scarce. Semi-supervised learning (SSL) has recently emerged as a viable alternative showing promise in producing models retaining competitive performance to supervised methods. Therefore, this paper introduces an SSL framework in the surgical tool detection paradigm, which aims to mitigate training data scarcity and data imbalance problems through a knowledge distillation approach. In the proposed work, we train a model with labelled data which initialises the Teacher-Student joint learning, where the Student is trained on Teacher-generated pseudo-labels from unlabelled data. We also propose a multi-class distance with a margin-based classification loss function in the region-of-interest head of the detector to segregate the foreground-background region effectively. Our results on m2cai16-tool-locations dataset indicates the superiority of our approach on different supervised data settings (1%, 2%, 5% and 10% of annotated data) where our model achieves overall improvements of 8%, 12%, and 27% in mean average precision on 1% labelled data over the state-of-the-art SSL methods and the supervised baseline, respectively. The code is available at https://github.com/Mansoor-at/Semi-supervised-surgical-tool-detection

    Kontextsensitivität für den Operationssaal der Zukunft

    Get PDF
    The operating room of the future is a topic of high interest. In this thesis, which is among the first in the recently defined field of Surgical Data Science, three major topics for automated context awareness in the OR of the future will be examined: improved surgical workflow analysis, the newly developed event impact factors, and as application combining these and other concepts the unified surgical display.Der Operationssaal der Zukunft ist ein Forschungsfeld von großer Bedeutung. In dieser Dissertation, die eine der ersten im kürzlich definierten Bereich „Surgical Data Science“ ist, werden drei Themen für die automatisierte Kontextsensitivität im OP der Zukunft untersucht: verbesserte chirurgische Worflowanalyse, die neuentwickelten „Event Impact Factors“ und als Anwendungsfall, der diese Konzepte mit anderen kombiniert, das vereinheitlichte chirurgische Display
    corecore