9,587 research outputs found

    Evaluation of Single Event Effects Using the Ultrafast Pulsed Laser Facility at the Saskatchewan Structural Sciences Centre

    Get PDF
    Single event effects have been an issue in microelectronic devices and circuits for some time, especially those used in radiation-intense environments such as space. Traditionally, devices have been tested using particle accelerator facilities for evaluation of the various single event effects phenomena. However, testing at these facilities can be prohibitive to many research groups due to costs and time availability. As a result, pulsed laser testing has evolved to become a standard, additional testing methodology for evaluating single event effects. Not only do pulsed laser facilities generally offer more flexibility in terms of cost, but it is also possible to gain additional information about the spatial and temporal nature of single event effect generation in sensitive areas of a device. To meet the needs of the radiation effects community, pulsed laser facilities have continued to be set up around the world. One of these includes the facility at the Saskatchewan Structural Sciences Centre. An earlier iteration of the facility previously existed which utilized a different equipment set and did not have the two photon absorption capabilities that the current version does. In this thesis, a sample of the work performed at the facility using both the single and two photon absorption capabilities are provided to demonstrate its capabilities; the devices tested for single event effect response included two Hall effect sensors and a Xilinx Virtex-5 FPGA. Additionally, a description of the main features of the facility in its current form is given. Through this work, the feasibility of the facility to provide results to users, both academic and industrial, is demonstrated

    Two-Electron Effects in the Multiphoton Ionization of Magnesium with 400 nm 150 fs Pulses

    Full text link
    The multiphoton ionization and photoelectron spectra of magnesium were studied at laser intensities of up to 6x10^{13} Wcm^{-2} using 150 fs laser pulses of a wavelength of 400 nm. The results indicated that a variety of different ionization mechanisms played a role in both types of spectra. A theoretical model describing the processes is presented and the routes to ionization are identified. The work demonstrates the significance of the two-electron nature of the atom in interpreting the experimental results.Comment: 14 pages, 9 figures, submitted to Physical Review

    Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors

    Full text link
    A photon-number-resolving detector based on a four-element superconducting nanowire single photon detector is demonstrated to have sub-30-ps resolution in measuring the arrival time of individual photons. This detector can be used to characterize the photon statistics of non-pulsed light sources and to mitigate dead-time effects in high-speed photon counting applications. Furthermore, a 25% system detection efficiency at 1550 nm was demonstrated, making the detector useful for both low-flux source characterization and high-speed photon-counting and quantum communication applications. The design, fabrication and testing of this detector are described, and a comparison between the measured and theoretical performance is presented.Comment: 13 pages, 5 figure

    The Borexino detector at the Laboratori Nazionali del Gran Sasso

    Full text link
    Borexino, a large volume detector for low energy neutrino spectroscopy, is currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. The main goal of the experiment is the real-time measurement of sub MeV solar neutrinos, and particularly of the mono energetic (862 keV) Be7 electron capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid scintillator. This paper is mostly devoted to the description of the detector structure, the photomultipliers, the electronics, and the trigger and calibration systems. The real performance of the detector, which always meets, and sometimes exceeds, design expectations, is also shown. Some important aspects of the Borexino project, i.e. the fluid handling plants, the purification techniques and the filling procedures, are not covered in this paper and are, or will be, published elsewhere (see Introduction and Bibliography).Comment: 37 pages, 43 figures, to be submitted to NI

    Visualization of hydrogen injection in a scramjet engine by simultaneous PLIF imaging and laser holographic imaging

    Get PDF
    Flowfield characterization has been accomplished for several fuel injector configurations using simultaneous planar laser induced fluorescence (PLIF) and laser holographic imaging (LHI). The experiments were carried out in the GASL-NASA HYPULSE real gas expansion tube facility, a pulsed facility with steady test times of about 350 microsec. The tests were done at simulated Mach numbers 13.5 and 17. The focus of this paper is on the measurement technologies used and their application in a research facility. The HYPULSE facility, the models used for the experiments, and the setup for the LHI and PLIF measurements are described. Measurement challenges and solutions are discussed. Results are presented for experiments with several fuel injector configurations and several equivalence ratios

    SINGLE-EVENT EFFECT STUDY ON A DC/DC PWM USING MULTIPLE TESTING METHODOLOGIES

    Get PDF
    As the technology advances, the feature size of the modern integrated circuits (ICs) has decreased dramatically to nanometer amplitude. On one hand, the shrink brings benefits, such as high speed and low power consumption per transistor. On the other hand, it poses a threat to the reliable operation of the ICs by the increased radiation sensitivity, such as single event effects (SEEs). For example, in 2010, a commercial-off-the-shelf (COTS) BiCMOS DC/DC pulse width modulator (PWM) IC was observed to be sensitive to neutrons on terrestrial real-time applications, where negative 6-μs glitches were induced by the single event transient (SET) effects. As a result, a project was set up to comprehensively study the failure mechanisms with various test methodologies and to develop SET-tolerant circuits to mitigate the SET sensitivity. First, the pulsed laser technique is adopted to perform the investigation on the SET response of the DC/DC PWM chip. A Ti:Sapphire single photon absorption (SPA) laser with different wavelengths and repetition rates is used as an irradiation source in this study. The sensitive devices in the chip are found to be the bandgap voltage reference circuit thanks to the well-controlled location information of the pulsed laser. The result is verified by comparing with the previous alpha particle and neutron testing data as well as circuit simulation using EDA tools. The root cause for the sensitivity is also acquired by analyzing the circuit. The temperature is also varied to study the effect of the temperature-induced quiescent point shift on the SET sensitivity of the chip. The experimental results show that the quiescent point shifts have different impacts on SET sensitivities due to the different structures and positions of the circuitries. After that, heavy ions, protons, and the pulsed X-ray are used as irradiation sources to further study the SET response of the DC/DC chip. The heavy ion and pulsed laser data are correlated to each other. And the equivalent LETs for laser with wavelengths of 750 nm, 800 nm, 850 nm and 920 nm are acquired. This conclusion can be used to obtain the equivalent heavy ion cross section of any area in a chip by using the pulsed laser technique, which will facilitate the SET testing procedure dramatically. The proton and heavy ion data are also correlated to each other based on a rectangular parallel piped (RPP) model, which gives convenience in Soft Error Rate (SER) estimation. The potential application of pulsed X-ray technique in SET field is also investigated. It is capable of generating similar results with those of heavy ion and pulsed laser testing. Both the advantages and disadvantages of this technique are explained. This provides an alternative choice for the SET testing in the future. Finally, the bandgap voltage reference circuit in the DC/DC PWM is redesigned and fabricated in bulk CMOS 130nm technology and a SET hardened bandgap circuit is proposed and investigated. The CMOS substrate PNP transistor is much less sensitive to SETs than the BiCMOS NPN transistor according to the pulsed laser test results. The reason is analyzed to be the different fabrication processes of the two technologies. The laser test results also indicate that the SET hardened bandgap circuit can mitigate the SET amplitude dramatically, which is consistent with the SPICE simulation results. These researches provide more understandings on the design of SET hardened bandgap voltage reference circuit

    Optical Properties of Superconducting Nanowire Single-Photon Detectors

    Full text link
    We measured the optical absorptance of superconducting nanowire single photon detectors. We found that 200-nm-pitch, 50%-fill-factor devices had an average absorptance of 21% for normally-incident front-illumination of 1.55-um-wavelength light polarized parallel to the nanowires, and only 10% for perpendicularly-polarized light. We also measured devices with lower fill-factors and narrower wires that were five times more sensitive to parallel-polarized photons than perpendicular-polarized photons. We developed a numerical model that predicts the absorptance of our structures. We also used our measurements, coupled with measurements of device detection efficiencies, to determine the probability of photon detection after an absorption event. We found that, remarkably, absorbed parallel-polarized photons were more likely to result in detection events than perpendicular-polarized photons, and we present a hypothesis that qualitatively explains this result. Finally, we also determined the enhancement of device detection efficiency and absorptance due to the inclusion of an integrated optical cavity over a range of wavelengths (700-1700 nm) on a number of devices, and found good agreement with our numerical model.Comment: will appear in optics express with minor revision

    Development of a Tabletop Setup for the Transient Current Technique Using Two-Photon Absorption in Silicon Particle Detectors

    Get PDF
    The transient current technique (TCT) is widely used in the field of silicon particle detector development. So far, only laser wavelengths with a photon energy larger than or similar to the silicon bandgap (single photon absorption) were used. Recently, measurements using two-photon absorption (TPA) for silicon detector testing have been carried out for the first time. Excess carriers are only created at the focal point of the laser beam and thus resolution in all three spatial directions could be achieved. The resolution perpendicular to the incident laser beam could be increased roughly by a factor of 10. First measurements using this new method were performed at the Singular Laser Facility of Universidad del Pais Vasco (UPV)/Euskal Herriko Unibertzitatea (EHU). Following the initial success of the method, a compact TPA-TCT setup is under development. A first description of the setup and laser system is presented in this articleThis work was supported in part by the Spanish Ministry of Economy and Competitiveness (MINECO) under Grant FPA2013-48387-C6-1-P and in part by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research under Grant 05E15CH

    Prospects for measuring the 229Th isomer energy using a metallic magnetic microcalorimeter

    Full text link
    The Thorium-229 isotope features a nuclear isomer state with an extremely low energy. The currently most accepted energy value, 7.8 +- 0.5 eV, was obtained from an indirect measurement using a NASA x-ray microcalorimeter with an instrumental resolution 26 eV. We study, how state-of-the-art magnetic metallic microcalorimeters with an energy resolution down to a few eV can be used to measure the isomer energy. In particular, resolving the 29.18 keV doublet in the \gamma-spectrum following the \alpha-decay of Uranium-233, corresponding to the decay into the ground and isomer state, allows to measure the isomer transition energy without additional theoretical input parameters, and increase the energy accuracy. We study the possibility of resolving the 29.18 keV line as a doublet and the dependence of the attainable precision of the energy measurement on the signal and background count rates and the instrumental resolution.Comment: 32 pages, 8 figures, eq. (3) correcte
    corecore