157 research outputs found

    Sketching Cuts in Graphs and Hypergraphs

    Full text link
    Sketching and streaming algorithms are in the forefront of current research directions for cut problems in graphs. In the streaming model, we show that (1ϵ)(1-\epsilon)-approximation for Max-Cut must use n1O(ϵ)n^{1-O(\epsilon)} space; moreover, beating 4/54/5-approximation requires polynomial space. For the sketching model, we show that rr-uniform hypergraphs admit a (1+ϵ)(1+\epsilon)-cut-sparsifier (i.e., a weighted subhypergraph that approximately preserves all the cuts) with O(ϵ2n(r+logn))O(\epsilon^{-2} n (r+\log n)) edges. We also make first steps towards sketching general CSPs (Constraint Satisfaction Problems)

    Densest Subgraph in Dynamic Graph Streams

    Full text link
    In this paper, we consider the problem of approximating the densest subgraph in the dynamic graph stream model. In this model of computation, the input graph is defined by an arbitrary sequence of edge insertions and deletions and the goal is to analyze properties of the resulting graph given memory that is sub-linear in the size of the stream. We present a single-pass algorithm that returns a (1+ϵ)(1+\epsilon) approximation of the maximum density with high probability; the algorithm uses O(\epsilon^{-2} n \polylog n) space, processes each stream update in \polylog (n) time, and uses \poly(n) post-processing time where nn is the number of nodes. The space used by our algorithm matches the lower bound of Bahmani et al.~(PVLDB 2012) up to a poly-logarithmic factor for constant ϵ\epsilon. The best existing results for this problem were established recently by Bhattacharya et al.~(STOC 2015). They presented a (2+ϵ)(2+\epsilon) approximation algorithm using similar space and another algorithm that both processed each update and maintained a (4+ϵ)(4+\epsilon) approximation of the current maximum density in \polylog (n) time per-update.Comment: To appear in MFCS 201

    Maximum Matching in Turnstile Streams

    Get PDF
    We consider the unweighted bipartite maximum matching problem in the one-pass turnstile streaming model where the input stream consists of edge insertions and deletions. In the insertion-only model, a one-pass 22-approximation streaming algorithm can be easily obtained with space O(nlogn)O(n \log n), where nn denotes the number of vertices of the input graph. We show that no such result is possible if edge deletions are allowed, even if space O(n3/2δ)O(n^{3/2-\delta}) is granted, for every δ>0\delta > 0. Specifically, for every 0ϵ10 \le \epsilon \le 1, we show that in the one-pass turnstile streaming model, in order to compute a O(nϵ)O(n^{\epsilon})-approximation, space Ω(n3/24ϵ)\Omega(n^{3/2 - 4\epsilon}) is required for constant error randomized algorithms, and, up to logarithmic factors, space O(n22ϵ)O( n^{2-2\epsilon} ) is sufficient. Our lower bound result is proved in the simultaneous message model of communication and may be of independent interest

    Sublinear Estimation of Weighted Matchings in Dynamic Data Streams

    Full text link
    This paper presents an algorithm for estimating the weight of a maximum weighted matching by augmenting any estimation routine for the size of an unweighted matching. The algorithm is implementable in any streaming model including dynamic graph streams. We also give the first constant estimation for the maximum matching size in a dynamic graph stream for planar graphs (or any graph with bounded arboricity) using O~(n4/5)\tilde{O}(n^{4/5}) space which also extends to weighted matching. Using previous results by Kapralov, Khanna, and Sudan (2014) we obtain a polylog(n)\mathrm{polylog}(n) approximation for general graphs using polylog(n)\mathrm{polylog}(n) space in random order streams, respectively. In addition, we give a space lower bound of Ω(n1ε)\Omega(n^{1-\varepsilon}) for any randomized algorithm estimating the size of a maximum matching up to a 1+O(ε)1+O(\varepsilon) factor for adversarial streams

    Weighted Min-Cut: Sequential, Cut-Query and Streaming Algorithms

    Get PDF
    Consider the following 2-respecting min-cut problem. Given a weighted graph GG and its spanning tree TT, find the minimum cut among the cuts that contain at most two edges in TT. This problem is an important subroutine in Karger's celebrated randomized near-linear-time min-cut algorithm [STOC'96]. We present a new approach for this problem which can be easily implemented in many settings, leading to the following randomized min-cut algorithms for weighted graphs. * An O(mlog2nloglogn+nlog6n)O(m\frac{\log^2 n}{\log\log n} + n\log^6 n)-time sequential algorithm: This improves Karger's O(mlog3n)O(m \log^3 n) and O(m(log2n)log(n2/m)loglogn+nlog6n)O(m\frac{(\log^2 n)\log (n^2/m)}{\log\log n} + n\log^6 n) bounds when the input graph is not extremely sparse or dense. Improvements over Karger's bounds were previously known only under a rather strong assumption that the input graph is simple [Henzinger et al. SODA'17; Ghaffari et al. SODA'20]. For unweighted graphs with parallel edges, our bound can be improved to O(mlog1.5nloglogn+nlog6n)O(m\frac{\log^{1.5} n}{\log\log n} + n\log^6 n). * An algorithm requiring O~(n)\tilde O(n) cut queries to compute the min-cut of a weighted graph: This answers an open problem by Rubinstein et al. ITCS'18, who obtained a similar bound for simple graphs. * A streaming algorithm that requires O~(n)\tilde O(n) space and O(logn)O(\log n) passes to compute the min-cut: The only previous non-trivial exact min-cut algorithm in this setting is the 2-pass O~(n)\tilde O(n)-space algorithm on simple graphs [Rubinstein et al., ITCS'18] (observed by Assadi et al. STOC'19). In contrast to Karger's 2-respecting min-cut algorithm which deploys sophisticated dynamic programming techniques, our approach exploits some cute structural properties so that it only needs to compute the values of O~(n)\tilde O(n) cuts corresponding to removing O~(n)\tilde O(n) pairs of tree edges, an operation that can be done quickly in many settings.Comment: Updates on this version: (1) Minor corrections in Section 5.1, 5.2; (2) Reference to newer results by GMW SOSA21 (arXiv:2008.02060v2), DEMN STOC21 (arXiv:2004.09129v2) and LMN 21 (arXiv:2102.06565v1

    Graph Sketches: Sparsification, Spanners, and Subgraphs

    Get PDF
    When processing massive data sets, a core task is to construct synopses of the data. To be useful, a synopsis data structure should be easy to construct while also yielding good approximations of the relevant properties of the data set. A particularly useful class of synopses are sketches, i.e., those based on linear projections of the data. These are applicable in many models including various parallel, stream, and compressed sensing settings. A rich body of analytic and empirical work exists for sketching numerical data such as the frequencies of a set of entities. Our work investigates graph sketching where the graphs of interest encode the relationships between these entities. The main challenge is to capture this richer structure and build the necessary synopses with only linear measurements. In this paper we consider properties of graphs including the size of the cuts, the distances between nodes, and the prevalence of dense sub-graphs. Our main result is a sketch-based sparsifier construction: we show that O̅(nε-2) random linear projections of a graph on n nodes suffice to (1 + ε) approximate all cut values. Similarly, we show that O(ε-2) linear projections suffice for (additively) approximating the fraction of induced sub-graphs that match a given pattern such as a small clique. Finally, for distance estimation we present sketch-based spanner constructions. In this last result the sketches are adaptive, i.e., the linear projections are performed in a small number of batches where each projection may be chosen dependent on the outcome of earlier sketches. All of the above results immediately give rise to data stream algorithms that also apply to dynamic graph streams where edges are both inserted and deleted. The non-adaptive sketches, such as those for sparsification and subgraphs, give us single-pass algorithms for distributed data streams with insertion and deletions. The adaptive sketches can be used to analyze MapReduce algorithms that use a small number of rounds

    Streaming Complexity of Spanning Tree Computation

    Get PDF
    The semi-streaming model is a variant of the streaming model frequently used for the computation of graph problems. It allows the edges of an n-node input graph to be read sequentially in p passes using Õ(n) space. If the list of edges includes deletions, then the model is called the turnstile model; otherwise it is called the insertion-only model. In both models, some graph problems, such as spanning trees, k-connectivity, densest subgraph, degeneracy, cut-sparsifier, and (Δ+1)-coloring, can be exactly solved or (1+ε)-approximated in a single pass; while other graph problems, such as triangle detection and unweighted all-pairs shortest paths, are known to require Ω̃(n) passes to compute. For many fundamental graph problems, the tractability in these models is open. In this paper, we study the tractability of computing some standard spanning trees, including BFS, DFS, and maximum-leaf spanning trees. Our results, in both the insertion-only and the turnstile models, are as follows. Maximum-Leaf Spanning Trees: This problem is known to be APX-complete with inapproximability constant ρ ∈ [245/244, 2). By constructing an ε-MLST sparsifier, we show that for every constant ε > 0, MLST can be approximated in a single pass to within a factor of 1+ε w.h.p. (albeit in super-polynomial time for ε ≤ ρ-1 assuming P ≠ NP) and can be approximated in polynomial time in a single pass to within a factor of ρ_n+ε w.h.p., where ρ_n is the supremum constant that MLST cannot be approximated to within using polynomial time and Õ(n) space. In the insertion-only model, these algorithms can be deterministic. BFS Trees: It is known that BFS trees require ω(1) passes to compute, but the naïve approach needs O(n) passes. We devise a new randomized algorithm that reduces the pass complexity to O(√n), and it offers a smooth tradeoff between pass complexity and space usage. This gives a polynomial separation between single-source and all-pairs shortest paths for unweighted graphs. DFS Trees: It is unknown whether DFS trees require more than one pass. The current best algorithm by Khan and Mehta [STACS 2019] takes Õ(h) passes, where h is the height of computed DFS trees. Note that h can be as large as Ω(m/n) for n-node m-edge graphs. Our contribution is twofold. First, we provide a simple alternative proof of this result, via a new connection to sparse certificates for k-node-connectivity. Second, we present a randomized algorithm that reduces the pass complexity to O(√n), and it also offers a smooth tradeoff between pass complexity and space usage.ISSN:1868-896

    Probabilistic Spectral Sparsification In Sublinear Time

    Full text link
    In this paper, we introduce a variant of spectral sparsification, called probabilistic (ε,δ)(\varepsilon,\delta)-spectral sparsification. Roughly speaking, it preserves the cut value of any cut (S,Sc)(S,S^{c}) with an 1±ε1\pm\varepsilon multiplicative error and a δS\delta\left|S\right| additive error. We show how to produce a probabilistic (ε,δ)(\varepsilon,\delta)-spectral sparsifier with O(nlogn/ε2)O(n\log n/\varepsilon^{2}) edges in time O~(n/ε2δ)\tilde{O}(n/\varepsilon^{2}\delta) time for unweighted undirected graph. This gives fastest known sub-linear time algorithms for different cut problems on unweighted undirected graph such as - An O~(n/OPT+n3/2+t)\tilde{O}(n/OPT+n^{3/2+t}) time O(logn/t)O(\sqrt{\log n/t})-approximation algorithm for the sparsest cut problem and the balanced separator problem. - A n1+o(1)/ε4n^{1+o(1)}/\varepsilon^{4} time approximation minimum s-t cut algorithm with an εn\varepsilon n additive error
    corecore