1,020 research outputs found

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    Min-Sum Scheduling Under Precedence Constraints

    Get PDF
    In many scheduling situations, it is important to consider non-linear functions of job completions times in the objective. This was already recognized by Smith (1956). Recently, the theory community has begun a thorough study of the resulting problems, mostly on single-machine instances for which all permutations of jobs are feasible. However, a typical feature of many scheduling problems is that some jobs can only be processed after others. In this paper, we give the first approximation algorithms for min-sum scheduling with (nonnegative, non-decreasing) non-linear functions and general precedence constraints. In particular, for 1|prec|sum w_j f(C_j), we propose a polynomial-time universal algorithm that performs well for all functions f simultaneously. Its approximation guarantee is 2 for all concave functions, at worst. We also provide a (non-universal) polynomial-time algorithm for the more general case 1|prec|sum f_j(C_j). The performance guarantee is no worse than 2+epsilon for all concave functions. Our results match the best bounds known for the case of linear functions, a widely studied problem, and considerably extend the results for minimizing sum w_jf(C_j) without precedence constraints
    • …
    corecore