1,086 research outputs found

    Single-frame super-resolution in remote sensing: a practical overview

    Get PDF
    Image acquisition technology is improving very fast from a performance point of view. However, there are physical restrictions that can only be solved using software processing strategies. This is particularly true in the case of super resolution (SR) methodologies. SR techniques have found a fertile application field in airborne and space optical acquisition platforms. Single-frame SR methods may be advantageous for some remote-sensing platforms and acquisition time conditions. The contributions of this article are basically two: (1) to present an overview of single-frame SR methods, making a comparative analysis of their performance in different and challenging remote-sensing scenarios, and (2) to propose a new single-frame SR taxonomy, and a common validation strategy. Finally, we should emphasize that, on the one hand, this is the first time, to the best of our knowledge, that such a review and analysis of single SR methods is made in the framework of remote sensing, and, on the other hand, that the new single-frame SR taxonomy is aimed at shedding some light when classifying some types of single-frame SR methods.This work was supported by the Spanish Ministry of Economy under the project ESP2013 - 48458-C4-3-P, by Generalitat Valenciana through project PROMETEO-II/2014/062, and by Universitat Jaume I through project P11B2014-09

    A convex formulation for hyperspectral image superresolution via subspace-based regularization

    Full text link
    Hyperspectral remote sensing images (HSIs) usually have high spectral resolution and low spatial resolution. Conversely, multispectral images (MSIs) usually have low spectral and high spatial resolutions. The problem of inferring images which combine the high spectral and high spatial resolutions of HSIs and MSIs, respectively, is a data fusion problem that has been the focus of recent active research due to the increasing availability of HSIs and MSIs retrieved from the same geographical area. We formulate this problem as the minimization of a convex objective function containing two quadratic data-fitting terms and an edge-preserving regularizer. The data-fitting terms account for blur, different resolutions, and additive noise. The regularizer, a form of vector Total Variation, promotes piecewise-smooth solutions with discontinuities aligned across the hyperspectral bands. The downsampling operator accounting for the different spatial resolutions, the non-quadratic and non-smooth nature of the regularizer, and the very large size of the HSI to be estimated lead to a hard optimization problem. We deal with these difficulties by exploiting the fact that HSIs generally "live" in a low-dimensional subspace and by tailoring the Split Augmented Lagrangian Shrinkage Algorithm (SALSA), which is an instance of the Alternating Direction Method of Multipliers (ADMM), to this optimization problem, by means of a convenient variable splitting. The spatial blur and the spectral linear operators linked, respectively, with the HSI and MSI acquisition processes are also estimated, and we obtain an effective algorithm that outperforms the state-of-the-art, as illustrated in a series of experiments with simulated and real-life data.Comment: IEEE Trans. Geosci. Remote Sens., to be publishe
    • …
    corecore