16 research outputs found

    Towards a smartphone-connected point-of-care test for HIV

    Get PDF
    The devastation caused by HIV is driving the development of new point-of-care diagnostics. The work presented in this thesis aims to help develop a new generation of smartphone- connected HIV tests designed to address the very high levels of undiagnosed HIV-infected individuals, by widening access to HIV testing to doctors surgeries, pharmacies and developing countries. The biosensor is based on mass manufacturable surface acoustic wave (SAW) devices, and uses piezoelectricity to transduce the binding of biomarkers on the surface of the device into a measurable electric signal, making the test low cost, easy to use and reliable. In addition, the SAW biosensor presented here has the ability to wirelessly and securely transmit results to healthcare providers to potentially offer follow-up appointments at local clinics, or virtually. This thesis begins with the theory behind SAW biosensors. A more focussed characterisation of the specific device developed is then presented, followed by the details of the work done to optimise the biosensor in order to make it a good candidate for a point-of-care test for HIV. Key results include the proof of concept detection of different biomarkers of HIV infection, as well as a demonstration of the ability of the SAW biosensor to deliver a fast response. Different pilot studies are then presented, demonstrating the performance of the device as a diagnostic test, highlighting 100% sensitivity and 100% specificity. These were conducted with more than 30 confirmed HIV positive patient samples and more than 100 healthy volunteers. The following chapter then examines the fundamental mechanisms underpinning the SAW biosensor output and an empirical method to ultimately design more sensitive devices in future antigen detection. This thesis concludes with a summary of the main results and future work, including the potential for larger clinical studies, and field trials in developing countries

    Microfluidics and Nanofluidics Handbook

    Get PDF
    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals

    Selected Papers from the 1st International Electronic Conference on Biosensors (IECB 2020)

    Get PDF
    The scope of this Special Issue is to collect some of the contributions to the First International Electronic Conference on Biosensors, which was held to bring together well-known experts currently working in biosensor technologies from around the globe, and to provide an online forum for presenting and discussing new results. The world of biosensors is definitively a versatile and universally applicable one, as demonstrated by the wide range of topics which were addressed at the Conference, such as: bioengineered and biomimetic receptors; microfluidics for biosensing; biosensors for emergency situations; nanotechnologies and nanomaterials for biosensors; intra- and extracellular biosensing; and advanced applications in clinical, environmental, food safety, and cultural heritage fields

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Full Issue: vol. 64, no. 4

    Get PDF
    corecore