3,410 research outputs found

    Sparse component separation for accurate CMB map estimation

    Get PDF
    The Cosmological Microwave Background (CMB) is of premier importance for the cosmologists to study the birth of our universe. Unfortunately, most CMB experiments such as COBE, WMAP or Planck do not provide a direct measure of the cosmological signal; CMB is mixed up with galactic foregrounds and point sources. For the sake of scientific exploitation, measuring the CMB requires extracting several different astrophysical components (CMB, Sunyaev-Zel'dovich clusters, galactic dust) form multi-wavelength observations. Mathematically speaking, the problem of disentangling the CMB map from the galactic foregrounds amounts to a component or source separation problem. In the field of CMB studies, a very large range of source separation methods have been applied which all differ from each other in the way they model the data and the criteria they rely on to separate components. Two main difficulties are i) the instrument's beam varies across frequencies and ii) the emission laws of most astrophysical components vary across pixels. This paper aims at introducing a very accurate modeling of CMB data, based on sparsity, accounting for beams variability across frequencies as well as spatial variations of the components' spectral characteristics. Based on this new sparse modeling of the data, a sparsity-based component separation method coined Local-Generalized Morphological Component Analysis (L-GMCA) is described. Extensive numerical experiments have been carried out with simulated Planck data. These experiments show the high efficiency of the proposed component separation methods to estimate a clean CMB map with a very low foreground contamination, which makes L-GMCA of prime interest for CMB studies.Comment: submitted to A&

    Statistical single channel source separation

    Get PDF
    PhD ThesisSingle channel source separation (SCSS) principally is one of the challenging fields in signal processing and has various significant applications. Unlike conventional SCSS methods which were based on linear instantaneous model, this research sets out to investigate the separation of single channel in two types of mixture which is nonlinear instantaneous mixture and linear convolutive mixture. For the nonlinear SCSS in instantaneous mixture, this research proposes a novel solution based on a two-stage process that consists of a Gaussianization transform which efficiently compensates for the nonlinear distortion follow by a maximum likelihood estimator to perform source separation. For linear SCSS in convolutive mixture, this research proposes new methods based on nonnegative matrix factorization which decomposes a mixture into two-dimensional convolution factor matrices that represent the spectral basis and temporal code. The proposed factorization considers the convolutive mixing in the decomposition by introducing frequency constrained parameters in the model. The method aims to separate the mixture into its constituent spectral-temporal source components while alleviating the effect of convolutive mixing. In addition, family of Itakura-Saito divergence has been developed as a cost function which brings the beneficial property of scale-invariant. Two new statistical techniques are proposed, namely, Expectation-Maximisation (EM) based algorithm framework which maximizes the log-likelihood of a mixed signals, and the maximum a posteriori approach which maximises the joint probability of a mixed signal using multiplicative update rules. To further improve this research work, a novel method that incorporates adaptive sparseness into the solution has been proposed to resolve the ambiguity and hence, improve the algorithm performance. The theoretical foundation of the proposed solutions has been rigorously developed and discussed in details. Results have concretely shown the effectiveness of all the proposed algorithms presented in this thesis in separating the mixed signals in single channel and have outperformed others available methods.Universiti Teknikal Malaysia Melaka(UTeM), Ministry of Higher Education of Malaysi

    Blind Multilinear Identification

    Full text link
    We discuss a technique that allows blind recovery of signals or blind identification of mixtures in instances where such recovery or identification were previously thought to be impossible: (i) closely located or highly correlated sources in antenna array processing, (ii) highly correlated spreading codes in CDMA radio communication, (iii) nearly dependent spectra in fluorescent spectroscopy. This has important implications --- in the case of antenna array processing, it allows for joint localization and extraction of multiple sources from the measurement of a noisy mixture recorded on multiple sensors in an entirely deterministic manner. In the case of CDMA, it allows the possibility of having a number of users larger than the spreading gain. In the case of fluorescent spectroscopy, it allows for detection of nearly identical chemical constituents. The proposed technique involves the solution of a bounded coherence low-rank multilinear approximation problem. We show that bounded coherence allows us to establish existence and uniqueness of the recovered solution. We will provide some statistical motivation for the approximation problem and discuss greedy approximation bounds. To provide the theoretical underpinnings for this technique, we develop a corresponding theory of sparse separable decompositions of functions, including notions of rank and nuclear norm that specialize to the usual ones for matrices and operators but apply to also hypermatrices and tensors.Comment: 20 pages, to appear in IEEE Transactions on Information Theor
    • …
    corecore