154,994 research outputs found

    Revisiting the theory of interferometric wide-field synthesis

    Full text link
    After several generations of interferometers in radioastronomy, wide-field imaging at high angular resolution is today a major goal for trying to match optical wide-field performances. All the radio-interferometric, wide-field imaging methods currently belong to the mosaicking family. Based on a 30 years old, original idea from Ekers & Rots, we aim at proposing an alternate formalism. Starting from their ideal case, we successively evaluate the impact of the standard ingredients of interferometric imaging. A comparison with standard nonlinear mosaicking shows that both processing schemes are not mathematically equivalent, though they both recover the sky brightness. In particular, the weighting scheme is very different in both methods. Moreover, the proposed scheme naturally processes the short spacings from both single-dish antennas and heterogeneous arrays. Finally, the sky gridding of the measured visibilities, required by the proposed scheme, may potentially save large amounts of hard-disk space and cpu processing power over mosaicking when handling data sets acquired with the on-the-fly observing mode. We propose to call this promising family of imaging methods wide-field synthesis because it explicitly synthesizes visibilities at a much finer spatial frequency resolution than the one set by the diameter of the interferometer antennas.Comment: 22 pages, 6 PostScript figures. Accepted for publication in Astronomy & Astrophysics. Uses aa LaTeX macros

    Toward Depth Estimation Using Mask-Based Lensless Cameras

    Full text link
    Recently, coded masks have been used to demonstrate a thin form-factor lensless camera, FlatCam, in which a mask is placed immediately on top of a bare image sensor. In this paper, we present an imaging model and algorithm to jointly estimate depth and intensity information in the scene from a single or multiple FlatCams. We use a light field representation to model the mapping of 3D scene onto the sensor in which light rays from different depths yield different modulation patterns. We present a greedy depth pursuit algorithm to search the 3D volume and estimate the depth and intensity of each pixel within the camera field-of-view. We present simulation results to analyze the performance of our proposed model and algorithm with different FlatCam settings

    Analysis techniques for complex-field radiation pattern measurements

    Get PDF
    Complex field measurements are increasingly becoming the standard for state-of-the-art astronomical instrumentation. Complex field measurements have been used to characterize a suite of ground, airborne, and space-based heterodyne receiver missions [1], [2], [3], [4], [5], [6], and a description of how to acquire coherent field maps for direct detector arrays was demonstrated in Davis et. al. 2017. This technique has the ability to determine both amplitude and phase radiation patterns from individual pixels on an array. Phase information helps to better characterize the optical performance of the array (as compared to total power radiation patterns) by constraining the fit in an additional plane [4]. Here we discuss the mathematical framework used in an analysis pipeline developed to process complex field radiation pattern measurements. This routine determines and compensates misalignments of the instrument and scanning system. We begin with an overview of Gaussian beam formalism and how it relates to complex field pattern measurements. Next we discuss a scan strategy using an offset in z along the optical axis that allows first-order optical standing waves between the scanned source and optical system to be removed in post-processing. Also discussed is a method by which the co- and cross-polarization fields can be extracted individually for each pixel by rotating the two orthogonal measurement planes until the signal is the co-polarization map is maximized (and the signal in the cross-polarization field is minimized). We detail a minimization function that can fit measurement data to an arbitrary beam shape model. We conclude by discussing the angular plane wave spectral (APWS) method for beam propagation, including the near-field to far-field transformation

    The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab

    Get PDF
    The ArgoNeuT liquid argon time projection chamber has collected thousands of neutrino and antineutrino events during an extended run period in the NuMI beam-line at Fermilab. This paper focuses on the main aspects of the detector layout and related technical features, including the cryogenic equipment, time projection chamber, read-out electronics, and off-line data treatment. The detector commissioning phase, physics run, and first neutrino event displays are also reported. The characterization of the main working parameters of the detector during data-taking, the ionization electron drift velocity and lifetime in liquid argon, as obtained from through-going muon data complete the present report.Comment: 43 pages, 27 figures, 5 tables - update referenc
    • …
    corecore