781 research outputs found

    Dimensionality reduction and sparse representations in computer vision

    Get PDF
    The proliferation of camera equipped devices, such as netbooks, smartphones and game stations, has led to a significant increase in the production of visual content. This visual information could be used for understanding the environment and offering a natural interface between the users and their surroundings. However, the massive amounts of data and the high computational cost associated with them, encumbers the transfer of sophisticated vision algorithms to real life systems, especially ones that exhibit resource limitations such as restrictions in available memory, processing power and bandwidth. One approach for tackling these issues is to generate compact and descriptive representations of image data by exploiting inherent redundancies. We propose the investigation of dimensionality reduction and sparse representations in order to accomplish this task. In dimensionality reduction, the aim is to reduce the dimensions of the space where image data reside in order to allow resource constrained systems to handle them and, ideally, provide a more insightful description. This goal is achieved by exploiting the inherent redundancies that many classes of images, such as faces under different illumination conditions and objects from different viewpoints, exhibit. We explore the description of natural images by low dimensional non-linear models called image manifolds and investigate the performance of computer vision tasks such as recognition and classification using these low dimensional models. In addition to dimensionality reduction, we study a novel approach in representing images as a sparse linear combination of dictionary examples. We investigate how sparse image representations can be used for a variety of tasks including low level image modeling and higher level semantic information extraction. Using tools from dimensionality reduction and sparse representation, we propose the application of these methods in three hierarchical image layers, namely low-level features, mid-level structures and high-level attributes. Low level features are image descriptors that can be extracted directly from the raw image pixels and include pixel intensities, histograms, and gradients. In the first part of this work, we explore how various techniques in dimensionality reduction, ranging from traditional image compression to the recently proposed Random Projections method, affect the performance of computer vision algorithms such as face detection and face recognition. In addition, we discuss a method that is able to increase the spatial resolution of a single image, without using any training examples, according to the sparse representations framework. In the second part, we explore mid-level structures, including image manifolds and sparse models, produced by abstracting information from low-level features and offer compact modeling of high dimensional data. We propose novel techniques for generating more descriptive image representations and investigate their application in face recognition and object tracking. In the third part of this work, we propose the investigation of a novel framework for representing the semantic contents of images. This framework employs high level semantic attributes that aim to bridge the gap between the visual information of an image and its textual description by utilizing low level features and mid level structures. This innovative paradigm offers revolutionary possibilities including recognizing the category of an object from purely textual information without providing any explicit visual example

    Deep Learning for Single Image Super-Resolution: A Brief Review

    Get PDF
    Single image super-resolution (SISR) is a notoriously challenging ill-posed problem, which aims to obtain a high-resolution (HR) output from one of its low-resolution (LR) versions. To solve the SISR problem, recently powerful deep learning algorithms have been employed and achieved the state-of-the-art performance. In this survey, we review representative deep learning-based SISR methods, and group them into two categories according to their major contributions to two essential aspects of SISR: the exploration of efficient neural network architectures for SISR, and the development of effective optimization objectives for deep SISR learning. For each category, a baseline is firstly established and several critical limitations of the baseline are summarized. Then representative works on overcoming these limitations are presented based on their original contents as well as our critical understandings and analyses, and relevant comparisons are conducted from a variety of perspectives. Finally we conclude this review with some vital current challenges and future trends in SISR leveraging deep learning algorithms.Comment: Accepted by IEEE Transactions on Multimedia (TMM

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Exploiting Cross Domain Relationships for Target Recognition

    Get PDF
    Cross domain recognition extracts knowledge from one domain to recognize samples from another domain of interest. The key to solving problems under this umbrella is to find out the latent connections between different domains. In this dissertation, three different cross domain recognition problems are studied by exploiting the relationships between different domains explicitly according to the specific real problems. First, the problem of cross view action recognition is studied. The same action might seem quite different when observed from different viewpoints. Thus, how to use the training samples from a given camera view and perform recognition in another new view is the key point. In this work, reconstructable paths between different views are built to mirror labeled actions from one source view into one another target view for learning an adaptable classifier. The path learning takes advantage of the joint dictionary learning techniques with exploiting hidden information in the seemingly useless samples, making the recognition performance robust and effective. Second, the problem of person re-identification is studied, which tries to match pedestrian images in non-overlapping camera views based on appearance features. In this work, we propose to learn a random kernel forest to discriminatively assign a specific distance metric to each pair of local patches from the two images in matching. The forest is composed by multiple decision trees, which are designed to partition the overall space of local patch-pairs into substantial subspaces, where a simple but effective local metric kernel can be defined to minimize the distance of true matches. Third, the problem of multi-event detection and recognition in smart grid is studied. The signal of multi-event might not be a straightforward combination of some single-event signals because of the correlation among devices. In this work, a concept of ``root-pattern\u27\u27 is proposed that can be extracted from a collection of single-event signals, but also transferable to analyse the constituent components of multi-cascading-event signals based on an over-complete dictionary, which is designed according to the ``root-patterns\u27\u27 with temporal information subtly embedded. The correctness and effectiveness of the proposed approaches have been evaluated by extensive experiments

    Watch, read and lookup: learning to spot signs from multiple supervisors

    Full text link
    The focus of this work is sign spotting - given a video of an isolated sign, our task is to identify whether and where it has been signed in a continuous, co-articulated sign language video. To achieve this sign spotting task, we train a model using multiple types of available supervision by: (1) watching existing sparsely labelled footage; (2) reading associated subtitles (readily available translations of the signed content) which provide additional weak-supervision; (3) looking up words (for which no co-articulated labelled examples are available) in visual sign language dictionaries to enable novel sign spotting. These three tasks are integrated into a unified learning framework using the principles of Noise Contrastive Estimation and Multiple Instance Learning. We validate the effectiveness of our approach on low-shot sign spotting benchmarks. In addition, we contribute a machine-readable British Sign Language (BSL) dictionary dataset of isolated signs, BSLDict, to facilitate study of this task. The dataset, models and code are available at our project page.Comment: Appears in: Asian Conference on Computer Vision 2020 (ACCV 2020) - Oral presentation. 29 page

    Learning Transferable Knowledge Through Embedding Spaces

    Get PDF
    The unprecedented processing demand, posed by the explosion of big data, challenges researchers to design efficient and adaptive machine learning algorithms that do not require persistent retraining and avoid learning redundant information. Inspired from learning techniques of intelligent biological agents, identifying transferable knowledge across learning problems has been a significant research focus to improve machine learning algorithms. In this thesis, we address the challenges of knowledge transfer through embedding spaces that capture and store hierarchical knowledge. In the first part of the thesis, we focus on the problem of cross-domain knowledge transfer. We first address zero-shot image classification, where the goal is to identify images from unseen classes using semantic descriptions of these classes. We train two coupled dictionaries which align visual and semantic domains via an intermediate embedding space. We then extend this idea by training deep networks that match data distributions of two visual domains in a shared cross-domain embedding space. Our approach addresses both semi-supervised and unsupervised domain adaptation settings. In the second part of the thesis, we investigate the problem of cross-task knowledge transfer. Here, the goal is to identify relations and similarities of multiple machine learning tasks to improve performance across the tasks. We first address the problem of zero-shot learning in a lifelong machine learning setting, where the goal is to learn tasks with no data using high-level task descriptions. Our idea is to relate high-level task descriptors to the optimal task parameters through an embedding space. We then develop a method to overcome the problem of catastrophic forgetting within continual learning setting of deep neural networks by enforcing the tasks to share the same distribution in the embedding space. We further demonstrate that our model can address the challenges of domain adaptation in the continual learning setting. Finally, we consider the problem of cross-agent knowledge transfer in the third part of the thesis. We demonstrate that multiple lifelong machine learning agents can collaborate to increase individual performance by sharing learned knowledge in an embedding space without sharing private data through a shared embedding space. We demonstrate that despite major differences, problems within the above learning scenarios can be tackled through learning an intermediate embedding space that allows transferring knowledge effectively
    • …
    corecore