2,745 research outputs found

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    A common framework and taxonomy for multicriteria scheduling problems with Interfering and competing Jobs: Multi-agent scheduling problems

    Get PDF
    Most classical scheduling research assumes that the objectives sought are common to all jobs to be scheduled. However, many real-life applications can be modeled by considering different sets of jobs, each one with its own objective(s), and an increasing number of papers addressing these problems has appeared over the last few years. Since so far the area lacks a uni ed view, the studied problems have received different names (such as interfering jobs, multi-agent scheduling, mixed-criteria, etc), some authors do not seem to be aware of important contributions in related problems, and solution procedures are often developed without taking into account existing ones. Therefore, the topic is in need of a common framework that allows for a systematic recollection of existing contributions, as well as a clear de nition of the main research avenues. In this paper we review multicriteria scheduling problems involving two or more sets of jobs and propose an uni ed framework providing a common de nition, name and notation for these problems. Moreover, we systematically review and classify the existing contributions in terms of the complexity of the problems and the proposed solution procedures, discuss the main advances, and point out future research lines in the topic

    An approach for the production scheduling problem when lot streaming is enabled at the operational level

    Get PDF
    By means of the present work, the production scheduling and the lot streaming problems are simultaneously addressed at flexible manufacturing environments. The proposal is based on a Constraint Programming (CP) formulation that can efficiently tackle the scheduling of manufacturing operations and the splitting of lots into smaller sublots. The approach is capable to define the number of sublots for each lot and the number of parts belonging to each sublot, as well as the assignment of the operations on sublots to machines, with their corresponding start and completion times. The CP model can be easily adapted to cope with different problem issues and several operational policies, which constitutes the main novelty of the contribution. A set of case studies were solved in order to validate the proposal and good quality solutions were found when minimizing the makespan.Sociedad Argentina de Informática e Investigación Operativ

    An approach for the production scheduling problem when lot streaming is enabled at the operational level

    Get PDF
    By means of the present work, the production scheduling and the lot streaming problems are simultaneously addressed at flexible manufacturing environments. The proposal is based on a Constraint Programming (CP) formulation that can efficiently tackle the scheduling of manufacturing operations and the splitting of lots into smaller sublots. The approach is capable to define the number of sublots for each lot and the number of parts belonging to each sublot, as well as the assignment of the operations on sublots to machines, with their corresponding start and completion times. The CP model can be easily adapted to cope with different problem issues and several operational policies, which constitutes the main novelty of the contribution. A set of case studies were solved in order to validate the proposal and good quality solutions were found when minimizing the makespan.Sociedad Argentina de Informática e Investigación Operativ

    An approach for the production scheduling problem when lot streaming is enabled at the operational level

    Get PDF
    By means of the present work, the production scheduling and the lot streaming problems are simultaneously addressed at flexible manufacturing environments. The proposal is based on a Constraint Programming (CP) formulation that can efficiently tackle the scheduling of manufacturing operations and the splitting of lots into smaller sublots. The approach is capable to define the number of sublots for each lot and the number of parts belonging to each sublot, as well as the assignment of the operations on sublots to machines, with their corresponding start and completion times. The CP model can be easily adapted to cope with different problem issues and several operational policies, which constitutes the main novelty of the contribution. A set of case studies were solved in order to validate the proposal and good quality solutions were found when minimizing the makespan.Sociedad Argentina de Informática e Investigación Operativ

    Two is better than one? Order aggregation in a meal delivery scheduling problem

    Get PDF
    We address a single-machine scheduling problem motivated by a last-mile-delivery setting for a food company. Customers place orders, each characterized by a delivery point (customer location) and an ideal delivery time. An order is considered on time if it is delivered to the customer within a time window given by the ideal delivery time , where is the same for all orders. A single courier (machine) is in charge of delivery to all customers. Orders are either delivered individually, or two orders can be aggregated in a single courier trip. All trips start and end at the restaurant, so no routing decisions are needed. The problem is to schedule courier trips so that the number of late orders is minimum. We show that the problem with order aggregation is -hard and propose a combinatorial branch and bound algorithm for its solution. The algorithm performance is assessed through a computational study on instances derived by a real-life application and on randomly generated instances. The behavior of the combinatorial algorithm is compared with that of the best ILP formulation known for the problem. Through another set of computational experiments, we also show that an appropriate choice of design parameters allows to apply the algorithm to a dynamic context, with orders arriving over time

    Workforce scheduling and planning : a combinatorial approach

    Get PDF
    This thesis investigates solution methodologies for concrete combinatorial problems in scheduling and planning. In all considered problems, it is assumed that the available information does not change over time; hence these problems have a deterministic structure. The problems studied in this thesis are divided into two groups; \workforce scheduling" and \planning". In workforce scheduling, the center problem is to build a schedule of tasks and technicians. It is assumed that the time line is split into workdays. In every workday, tasks must be grouped as sequences, each being performed by a team of technicians. Skill requirements of every task in a sequence must be met by the assigned team. This scheduling problem with some other aspects is di??cult to solve quickly and e??ciently. We developed a Mixed Integer Programming (MIP) based heuristic approach to tackle this complex scheduling problem. Our MIP model is basically a formulation of the matching problem on bipartite graphs and it enabled us to have a global way of assigning technicians to tasks. It is capable of revising technician-task allocations and performs very well, especially in the case of rare skills. A workday schedule of the aforementioned problem includes many-to-one type workforce assignments. As the second problem in workforce scheduling, stability of these workforce assignments is investigated. The stability de??nition of Gale-Shapley on the Marriage model is extended to the setting of multi-skill workforce assignments. It is shown that ??nding stable assignments is NP-hard. In some special cases stable assignments can be constructed in polynomial time. For the general case, we give linear inequalities of binary variables that describe the set of stable assignments. We propose a MIP model including these linear inequalities. To the best of our knowledge, the Gale-Shapley stability is not studied under the multi-skill workforce scheduling framework so far in the literature. The closed form description of stable assignments is also the ??rst embedding of the Gale-Shapley stability concept into an NP-complete problem. In the second problem group, two vehicle related problems are studied; the "dial a ride problem" and the "vehicle refueling problem". In the former, the goal is to check whether a list of pick-up and delivery tasks can be achieved under several timing constraints. It is shown this feasibility testing can be done in linear time using interval graphs. In the vehicle refueling problem, the goal is to make refueling decisions to reach a destination such that the cost of the travel is minimized. A greedy algorithm is presented to ??nd optimal refueling decisions. Moreover, it is shown that the vehicle refueling problem is equivalent to a ow problem on a special network
    • …
    corecore