106,301 research outputs found

    Single Image Reflection Suppression

    Get PDF
    Reflections are a common artifact in images taken through glass windows. Automatically removing the reflection artifacts after the picture is taken is an ill-posed problem. Attempts to solve this problem using optimization schemes therefore rely on various prior assumptions from the physical world. Instead of removing reflections from a single image, which has met with limited success so far, we propose a novel approach to suppress reflections. It is based on a Laplacian data fidelity term and an l(0) gradient sparsity term imposed on the output. With experiments on artificial and real-world images we show that our reflection suppression method performs better than the state-of-the-art reflection removal techniques

    A Tunable Echelle Imager

    Get PDF
    We describe and evaluate a new instrument design called a Tunable Echelle Imager (TEI). In this instrument, the output from an imaging Fabry-Perot interferometer is cross-dispersed by a grism in one direction and dispersed by an echelle grating in the perpendicular direction. This forms a mosaic of different narrow-band images of the same field on a detector. It offers a distinct wavelength multiplex advantage over a traditional imaging Fabry-Perot device. Potential applications of the TEI include spectrophotometric imaging and OH-suppressed imaging by rejection.Comment: 11 pages, 12 figures, accepted by PAS

    Experimental demonstration of a novel heterogeneously integrated III-V on Si microlaser

    Get PDF
    In this work we present the first experimental demonstration of a novel class of heterogeneously integrated III-V-on-silicon microlasers. We first show that by coupling a silicon cavity to a III-V wire, the interaction between the propagating mode in the III-V wire and the cavity mode in the silicon resonator results in high, narrow band reflection back into the III-V waveguide, forming a so-called resonant mirror. By combining two such mirrors and providing optical gain in the III-V wire in between these 2 mirrors, laser operation can be realized. We simulate the reflectivity spectrum of such a resonant mirror using 3D FDTD and discuss the results. We also present experimental results of the very first optically pumped heterogeneously integrated resonant mirror laser. The fabricated device measures 55 mu m by 2 mu m and shows single mode laser emission with a side-mode suppression ratio of 37 dB

    Suppression of surface barrier in superconductors by columnar defects

    Full text link
    We investigate the influence of columnar defects in layered superconductors on the thermally activated penetration of pancake vortices through the surface barrier. Columnar defects, located near the surface, facilitate penetration of vortices through the surface barrier, by creating ``weak spots'', through which pancakes can penetrate into the superconductor. Penetration of a pancake mediated by an isolated column, located near the surface, is a two-stage process involving hopping from the surface to the column and the detachment from the column into the bulk; each stage is controlled by its own activation barrier. The resulting effective energy is equal to the maximum of those two barriers. For a given external field there exists an optimum location of the column for which the barriers for the both processes are equal and the reduction of the effective penetration barrier is maximal. At high fields the effective penetration field is approximately two times smaller than in unirradiated samples. We also estimate the suppression of the effective penetration field by column clusters. This mechanism provides further reduction of the penetration field at low temperatures.Comment: 8 pages, 9 figures, submitted to Phys. Rev.
    • 

    corecore