1,860 research outputs found

    DR-Net: Transmission Steered Single Image Dehazing Network with Weakly Supervised Refinement

    Full text link
    Despite the recent progress in image dehazing, several problems remain largely unsolved such as robustness for varying scenes, the visual quality of reconstructed images, and effectiveness and flexibility for applications. To tackle these problems, we propose a new deep network architecture for single image dehazing called DR-Net. Our model consists of three main subnetworks: a transmission prediction network that predicts transmission map for the input image, a haze removal network that reconstructs latent image steered by the transmission map, and a refinement network that enhances the details and color properties of the dehazed result via weakly supervised learning. Compared to previous methods, our method advances in three aspects: (i) pure data-driven model; (ii) the end-to-end system; (iii) superior robustness, accuracy, and applicability. Extensive experiments demonstrate that our DR-Net outperforms the state-of-the-art methods on both synthetic and real images in qualitative and quantitative metrics. Additionally, the utility of DR-Net has been illustrated by its potential usage in several important computer vision tasks.Comment: 8 pages, 8 figures, submitted to CVPR 201

    An All-in-One Network for Dehazing and Beyond

    Full text link
    This paper proposes an image dehazing model built with a convolutional neural network (CNN), called All-in-One Dehazing Network (AOD-Net). It is designed based on a re-formulated atmospheric scattering model. Instead of estimating the transmission matrix and the atmospheric light separately as most previous models did, AOD-Net directly generates the clean image through a light-weight CNN. Such a novel end-to-end design makes it easy to embed AOD-Net into other deep models, e.g., Faster R-CNN, for improving high-level task performance on hazy images. Experimental results on both synthesized and natural hazy image datasets demonstrate our superior performance than the state-of-the-art in terms of PSNR, SSIM and the subjective visual quality. Furthermore, when concatenating AOD-Net with Faster R-CNN and training the joint pipeline from end to end, we witness a large improvement of the object detection performance on hazy images

    A Cascaded Convolutional Neural Network for Single Image Dehazing

    Full text link
    Images captured under outdoor scenes usually suffer from low contrast and limited visibility due to suspended atmospheric particles, which directly affects the quality of photos. Despite numerous image dehazing methods have been proposed, effective hazy image restoration remains a challenging problem. Existing learning-based methods usually predict the medium transmission by Convolutional Neural Networks (CNNs), but ignore the key global atmospheric light. Different from previous learning-based methods, we propose a flexible cascaded CNN for single hazy image restoration, which considers the medium transmission and global atmospheric light jointly by two task-driven subnetworks. Specifically, the medium transmission estimation subnetwork is inspired by the densely connected CNN while the global atmospheric light estimation subnetwork is a light-weight CNN. Besides, these two subnetworks are cascaded by sharing the common features. Finally, with the estimated model parameters, the haze-free image is obtained by the atmospheric scattering model inversion, which achieves more accurate and effective restoration performance. Qualitatively and quantitatively experimental results on the synthetic and real-world hazy images demonstrate that the proposed method effectively removes haze from such images, and outperforms several state-of-the-art dehazing methods.Comment: This manuscript is accepted by IEEE ACCES

    Densely Connected Pyramid Dehazing Network

    Full text link
    We propose a new end-to-end single image dehazing method, called Densely Connected Pyramid Dehazing Network (DCPDN), which can jointly learn the transmission map, atmospheric light and dehazing all together. The end-to-end learning is achieved by directly embedding the atmospheric scattering model into the network, thereby ensuring that the proposed method strictly follows the physics-driven scattering model for dehazing. Inspired by the dense network that can maximize the information flow along features from different levels, we propose a new edge-preserving densely connected encoder-decoder structure with multi-level pyramid pooling module for estimating the transmission map. This network is optimized using a newly introduced edge-preserving loss function. To further incorporate the mutual structural information between the estimated transmission map and the dehazed result, we propose a joint-discriminator based on generative adversarial network framework to decide whether the corresponding dehazed image and the estimated transmission map are real or fake. An ablation study is conducted to demonstrate the effectiveness of each module evaluated at both estimated transmission map and dehazed result. Extensive experiments demonstrate that the proposed method achieves significant improvements over the state-of-the-art methods. Code will be made available at: https://github.com/hezhangsprinte

    A Smoke Removal Method for Laparoscopic Images

    Full text link
    In laparoscopic surgery, image quality can be severely degraded by surgical smoke, which not only introduces error for the image processing (used in image guided surgery), but also reduces the visibility of the surgeons. In this paper, we propose to enhance the laparoscopic images by decomposing them into unwanted smoke part and enhanced part using a variational approach. The proposed method relies on the observation that smoke has low contrast and low inter-channel differences. A cost function is defined based on this prior knowledge and is solved using an augmented Lagrangian method. The obtained unwanted smoke component is then subtracted from the original degraded image, resulting in the enhanced image. The obtained quantitative scores in terms of FADE, JNBM and RE metrics show that our proposed method performs rather well. Furthermore, the qualitative visual inspection of the results show that it removes smoke effectively from the laparoscopic images

    Joint Transmission Map Estimation and Dehazing using Deep Networks

    Full text link
    Single image haze removal is an extremely challenging problem due to its inherent ill-posed nature. Several prior-based and learning-based methods have been proposed in the literature to solve this problem and they have achieved superior results. However, most of the existing methods assume constant atmospheric light model and tend to follow a two-step procedure involving prior-based methods for estimating transmission map followed by calculation of dehazed image using the closed form solution. In this paper, we relax the constant atmospheric light assumption and propose a novel unified single image dehazing network that jointly estimates the transmission map and performs dehazing. In other words, our new approach provides an end-to-end learning framework, where the inherent transmission map and dehazed result are learned directly from the loss function. Extensive experiments on synthetic and real datasets with challenging hazy images demonstrate that the proposed method achieves significant improvements over the state-of-the-art methods.Comment: This paper has been accepted in IEEE-TCSV

    Unsupervised Single Image Dehazing Using Dark Channel Prior Loss

    Full text link
    Single image dehazing is a critical stage in many modern-day autonomous vision applications. Early prior-based methods often involved a time-consuming minimization of a hand-crafted energy function. Recent learning-based approaches utilize the representational power of deep neural networks (DNNs) to learn the underlying transformation between hazy and clear images. Due to inherent limitations in collecting matching clear and hazy images, these methods resort to training on synthetic data; constructed from indoor images and corresponding depth information. This may result in a possible domain shift when treating outdoor scenes. We propose a completely unsupervised method of training via minimization of the well-known, Dark Channel Prior (DCP) energy function. Instead of feeding the network with synthetic data, we solely use real-world outdoor images and tune the network's parameters by directly minimizing the DCP. Although our "Deep DCP" technique can be regarded as a fast approximator of DCP, it actually improves its results significantly. This suggests an additional regularization obtained via the network and learning process. Experiments show that our method performs on par with large-scale supervised methods

    Fast Single Image Dehazing via Multilevel Wavelet Transform based Optimization

    Full text link
    The quality of images captured in outdoor environments can be affected by poor weather conditions such as fog, dust, and atmospheric scattering of other particles. This problem can bring extra challenges to high-level computer vision tasks like image segmentation and object detection. However, previous studies on image dehazing suffer from a huge computational workload and corruption of the original image, such as over-saturation and halos. In this paper, we present a novel image dehazing approach based on the optical model for haze images and regularized optimization. Specifically, we convert the non-convex, bilinear problem concerning the unknown haze-free image and light transmission distribution to a convex, linear optimization problem by estimating the atmosphere light constant. Our method is further accelerated by introducing a multilevel Haar wavelet transform. The optimization, instead, is applied to the low frequency sub-band decomposition of the original image. This dimension reduction significantly improves the processing speed of our method and exhibits the potential for real-time applications. Experimental results show that our approach outperforms state-of-the-art dehazing algorithms in terms of both image reconstruction quality and computational efficiency. For implementation details, source code can be publicly accessed via http://github.com/JiaxiHe/Image-and-Video-Dehazing.Comment: 23 pages, 13 figure

    "Double-DIP": Unsupervised Image Decomposition via Coupled Deep-Image-Priors

    Full text link
    Many seemingly unrelated computer vision tasks can be viewed as a special case of image decomposition into separate layers. For example, image segmentation (separation into foreground and background layers); transparent layer separation (into reflection and transmission layers); Image dehazing (separation into a clear image and a haze map), and more. In this paper we propose a unified framework for unsupervised layer decomposition of a single image, based on coupled "Deep-image-Prior" (DIP) networks. It was shown [Ulyanov et al] that the structure of a single DIP generator network is sufficient to capture the low-level statistics of a single image. We show that coupling multiple such DIPs provides a powerful tool for decomposing images into their basic components, for a wide variety of applications. This capability stems from the fact that the internal statistics of a mixture of layers is more complex than the statistics of each of its individual components. We show the power of this approach for Image-Dehazing, Fg/Bg Segmentation, Watermark-Removal, Transparency Separation in images and video, and more. These capabilities are achieved in a totally unsupervised way, with no training examples other than the input image/video itself.Comment: Project page: http://www.wisdom.weizmann.ac.il/~vision/DoubleDIP

    Progressive Feature Fusion Network for Realistic Image Dehazing

    Full text link
    Single image dehazing is a challenging ill-posed restoration problem. Various prior-based and learning-based methods have been proposed. Most of them follow a classic atmospheric scattering model which is an elegant simplified physical model based on the assumption of single-scattering and homogeneous atmospheric medium. The formulation of haze in realistic environment is more complicated. In this paper, we propose to take its essential mechanism as "black box", and focus on learning an input-adaptive trainable end-to-end dehazing model. An U-Net like encoder-decoder deep network via progressive feature fusions has been proposed to directly learn highly nonlinear transformation function from observed hazy image to haze-free ground-truth. The proposed network is evaluated on two public image dehazing benchmarks. The experiments demonstrate that it can achieve superior performance when compared with popular state-of-the-art methods. With efficient GPU memory usage, it can satisfactorily recover ultra high definition hazed image up to 4K resolution, which is unaffordable by many deep learning based dehazing algorithms.Comment: 14 pages, 7 figures, 1 tables, accepted by ACCV201
    • …
    corecore