43 research outputs found

    DEEP LEARNING FOR IMAGE RESTORATION AND ROBOTIC VISION

    Get PDF
    Traditional model-based approach requires the formulation of mathematical model, and the model often has limited performance. The quality of an image may degrade due to a variety of reasons: It could be the context of scene is affected by weather conditions such as haze, rain, and snow; It\u27s also possible that there is some noise generated during image processing/transmission (e.g., artifacts generated during compression.). The goal of image restoration is to restore the image back to desirable quality both subjectively and objectively. Agricultural robotics is gaining interest these days since most agricultural works are lengthy and repetitive. Computer vision is crucial to robots especially the autonomous ones. However, it is challenging to have a precise mathematical model to describe the aforementioned problems. Compared with traditional approach, learning-based approach has an edge since it does not require any model to describe the problem. Moreover, learning-based approach now has the best-in-class performance on most of the vision problems such as image dehazing, super-resolution, and image recognition. In this dissertation, we address the problem of image restoration and robotic vision with deep learning. These two problems are highly related with each other from a unique network architecture perspective: It is essential to select appropriate networks when dealing with different problems. Specifically, we solve the problems of single image dehazing, High Efficiency Video Coding (HEVC) loop filtering and super-resolution, and computer vision for an autonomous robot. Our technical contributions are threefold: First, we propose to reformulate haze as a signal-dependent noise which allows us to uncover it by learning a structural residual. Based on our novel reformulation, we solve dehazing with recursive deep residual network and generative adversarial network which emphasizes on objective and perceptual quality, respectively. Second, we replace traditional filters in HEVC with a Convolutional Neural Network (CNN) filter. We show that our CNN filter could achieve 7% BD-rate saving when compared with traditional filters such as bilateral and deblocking filter. We also propose to incorporate a multi-scale CNN super-resolution module into HEVC. Such post-processing module could improve visual quality under extremely low bandwidth. Third, a transfer learning technique is implemented to support vision and autonomous decision making of a precision pollination robot. Good experimental results are reported with real-world data

    Image processing and synthesis: From hand-crafted to data-driven modeling

    Get PDF
    This work investigates image and video restoration problems using effective optimization algorithms. First, we study the problem of single image dehazing to suppress artifacts in compressed or noisy images and videos. Our method is based on the linear haze model and minimizes the gradient residual between the input and output images. This successfully suppresses any new artifacts that are not obvious in the input images. Second, we propose a new method for image inpainting using deep neural networks. Given a set of training data, deep generate models can generate high-quality natural images following the same distribution. We search the nearest neighbor in the latent space of the deep generate models using a weighted context loss and prior loss. This code is then converted to the clean and uncorrupted image of the input. Third, we study the problem of recovering high-quality images from very noisy raw data captured in low-light conditions with short exposures. We build deep neural networks to learn the camera processing pipeline specifically for low-light raw data with an extremely low signal-to-noise ratio (SNR). To train the networks, we capture a new dataset of more than five thousand images with short-exposed and long-exposed pairs. Promising results are obtained compared with the traditional image processing pipeline. Finally, we propose a new method for extreme-low light video processing. The raw video frames are pre-processed using spatial-temporal denoising. A neural network is trained to move the error in the pre-processed data, learning to perform the image processing pipeline and encourage temporal smoothness of the output. Both quantitative and qualitative results demonstrate the proposed method significantly outperform the existing methods. It also paves the way for future research on this area

    A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts

    Full text link
    Machine learning methods strive to acquire a robust model during training that can generalize well to test samples, even under distribution shifts. However, these methods often suffer from a performance drop due to unknown test distributions. Test-time adaptation (TTA), an emerging paradigm, has the potential to adapt a pre-trained model to unlabeled data during testing, before making predictions. Recent progress in this paradigm highlights the significant benefits of utilizing unlabeled data for training self-adapted models prior to inference. In this survey, we divide TTA into several distinct categories, namely, test-time (source-free) domain adaptation, test-time batch adaptation, online test-time adaptation, and test-time prior adaptation. For each category, we provide a comprehensive taxonomy of advanced algorithms, followed by a discussion of different learning scenarios. Furthermore, we analyze relevant applications of TTA and discuss open challenges and promising areas for future research. A comprehensive list of TTA methods can be found at \url{https://github.com/tim-learn/awesome-test-time-adaptation}.Comment: Discussions, comments, and questions are all welcomed in \url{https://github.com/tim-learn/awesome-test-time-adaptation
    corecore