103 research outputs found

    이동 물체 감지 및 뢄진 μ˜μƒ λ³΅μ›μ˜ 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μžμ—°κ³Όν•™λŒ€ν•™ μˆ˜λ¦¬κ³Όν•™λΆ€, 2021. 2. κ°•λͺ…μ£Ό.Robust principal component analysis(RPCA), a method used to decom- pose a matrix into the sum of a low-rank matrix and a sparse matrix, has been proven effective in modeling the static background of videos. However, because a dynamic background cannot be represented by a low-rank matrix, measures additional to the RPCA are required. In this thesis, we propose masked RPCA to process backgrounds containing moving textures. First- order Marcov random field (MRF) is used to generate a mask that roughly labels moving objects and backgrounds. To estimate the background, the rank minimization process is then applied with the mask multiplied. During the iteration, the background rank increases as the object mask expands, and the weight of the rank constraint term decreases, which increases the accuracy of the background. We compared the proposed method with state- of-art, end-to-end methods to demonstrate its advantages. Subsequently, we suggest novel dedusting method based on dust-optimized transmission map and deep image prior. This method consists of estimating atmospheric light and transmission in that order, which is similar to dark channel prior-based dehazing methods. However, existing atmospheric light estimating methods widely used in dehazing schemes give an overly bright estimation, which results in unrealistically dark dedusting results. To ad- dress this problem, we propose a segmentation-based method that gives new estimation in atmospheric light. Dark channel prior based transmission map with new atmospheric light gives unnatural intensity ordering and zero value at low transmission regions. Therefore, the transmission map is refined by scattering model based transformation and dark channel adaptive non-local total variation (NLTV) regularization. Parameter optimizing steps with deep image prior(DIP) gives the final dedusting result.강건 μ£Όμ„±λΆ„ 뢄석은 λ°°κ²½ 감산을 ν†΅ν•œ λ™μ˜μƒμ˜ μ „κ²½ μΆ”μΆœμ˜ λ°©λ²•μœΌλ‘œ 이 μš©λ˜μ–΄μ™”μœΌλ‚˜, λ™μ λ°°κ²½μ€μ €κ³„μˆ˜ν–‰λ ¬λ‘œν‘œν˜„λ μˆ˜μ—†κΈ°λ•Œλ¬Έμ—λ™μ λ°°κ²½ 감산에성λŠ₯μ ν•œκ³„λ₯Όκ°€μ§€κ³ μžˆμ—ˆλ‹€. μš°λ¦¬λŠ”μ „κ²½κ³Όλ°°κ²½μ„κ΅¬λΆ„ν•˜λŠ”μΌκ³„λ§ˆ λ₯΄μ½”프연쇄λ₯Όλ„μž…ν•΄μ •μ λ°°κ²½μ„λ‚˜νƒ€λ‚΄λŠ”ν•­κ³Όκ³±ν•˜κ³ μ΄κ²ƒμ„μ΄μš©ν•œμƒˆλ‘œ μš΄ν˜•νƒœμ˜κ°•κ±΄μ£Όμ„±λΆ„λΆ„μ„μ„μ œμ•ˆν•˜μ—¬λ™μ λ°°κ²½κ°μ‚°λ¬Έμ œλ₯Όν•΄κ²°ν•œλ‹€. ν•΄λ‹Ή μ΅œμ†Œν™”λ¬Έμ œλŠ”λ°˜λ³΅μ μΈκ΅μ°¨μ΅œμ ν™”λ₯Όν†΅ν•˜μ—¬ν•΄κ²°ν•œλ‹€. μ΄μ–΄μ„œλŒ€κΈ°μ€‘μ˜λ―Έμ„Έ λ¨Όμ§€μ—μ˜ν•΄μ˜€μ—Όλœμ˜μƒμ„λ³΅μ›ν•œλ‹€. μ˜μƒλΆ„ν• κ³Όμ•”ν‘μ±„λ„κ°€μ •μ—κΈ°λ°˜ν•˜μ—¬ κΉŠμ΄μ§€λ„λ₯Όκ΅¬ν•˜κ³ , λΉ„κ΅­μ†Œμ΄λ³€λ™μ΅œμ†Œν™”λ₯Όν†΅ν•˜μ—¬μ •μ œν•œλ‹€. μ΄ν›„κΉŠμ€μ˜μƒ κ°€μ •μ—κΈ°λ°˜ν•œμ˜μƒμƒμ„±κΈ°λ₯Όν†΅ν•˜μ—¬μ΅œμ’…μ μœΌλ‘œλ³΅μ›λœμ˜μƒμ„κ΅¬ν•œλ‹€. μ‹€ν—˜μ„ ν†΅ν•˜μ—¬μ œμ•ˆλœλ°©λ²•μ„λ‹€λ₯Έλ°©λ²•λ“€κ³ΌλΉ„κ΅ν•˜κ³ μ§ˆμ μΈμΈ‘면과양적인츑면λͺ¨ λ‘μ—μ„œμš°μˆ˜ν•¨μ„ν™•μΈν•œλ‹€.Abstract i 1 Introduction 1 1.1 Moving Object Detection In Dynamic Backgrounds 1 1.2 Image Dedusting 2 2 Preliminaries 4 2.1 Moving Object Detection In Dynamic Backgrounds 4 2.1.1 Literature review 5 2.1.2 Robust principal component analysis(RPCA) and their application status 7 2.1.3 Graph cuts and Ξ±-expansion algorithm 14 2.2 Image Dedusting 16 2.2.1 Image dehazing methods 16 2.2.2 Dust model 18 2.2.3 Non-local total variation(NLTV) 19 3 Dynamic Background Subtraction With Masked RPCA 21 3.1 Motivation 21 3.1.1 Motivation of background modeling 21 3.1.2 Mask formulation 23 3.1.3 Model 24 3.2 Optimization 25 3.2.1 L-Subproblem 25 3.2.2 L˜-Subproblem 26 3.2.3 M-Subproblem 27 3.2.4 p-Subproblem 28 3.2.5 Adaptive parameter control 28 3.2.6 Convergence 29 3.3 Experimental results 31 3.3.1 Benchmark Algorithms And Videos 31 3.3.2 Implementation 32 3.3.3 Evaluation 32 4 Deep Image Dedusting With Dust-Optimized Transmission Map 41 4.1 Transmission estimation 41 4.1.1 Atmospheric light estimation 41 4.1.2 Transmission estimation 43 4.2 Scene radiance recovery 47 4.3 Experimental results 51 4.3.1 Implementation 51 4.3.2 Evaluation 52 5 Conclusion 58 Abstract (in Korean) 69 Acknowledgement (in Korean) 70Docto

    μ˜μƒ 작음 μ œκ±°μ™€ μˆ˜μ€‘ μ˜μƒ 볡원을 μœ„ν•œ μ •κ·œν™” 방법

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μžμ—°κ³Όν•™λŒ€ν•™ μˆ˜λ¦¬κ³Όν•™λΆ€,2020. 2. κ°•λͺ…μ£Ό.In this thesis, we discuss regularization methods for denoising images corrupted by Gaussian or Cauchy noise and image dehazing in underwater. In image denoising, we introduce the second-order extension of structure tensor total variation and propose a hybrid method for additive Gaussian noise. Furthermore, we apply the weighted nuclear norm under nonlocal framework to remove additive Cauchy noise in images. We adopt the nonconvex alternating direction method of multiplier to solve the problem iteratively. Subsequently, based on the color ellipsoid prior which is effective for restoring hazy image in the atmosphere, we suggest novel dehazing method adapted for underwater condition. Because attenuation rate of light varies depending on wavelength of light in water, we apply the color ellipsoid prior only for green and blue channels and combine it with intensity map of red channel to refine the obtained depth map further. Numerical experiments show that our proposed methods show superior results compared with other methods both in quantitative and qualitative aspects.λ³Έ λ…Όλ¬Έμ—μ„œ μš°λ¦¬λŠ” κ°€μš°μ‹œμ•ˆ λ˜λŠ” μ½”μ‹œ 뢄포λ₯Ό λ”°λ₯΄λŠ” 작음으둜 μ˜€μ—Όλœ μ˜μƒκ³Ό λ¬Ό μ†μ—μ„œ 얻은 μ˜μƒμ„ λ³΅μ›ν•˜κΈ° μœ„ν•œ μ •κ·œν™” 방법에 λŒ€ν•΄ λ…Όμ˜ν•œλ‹€. μ˜μƒ 작음 λ¬Έμ œμ—μ„œ μš°λ¦¬λŠ” λ§μ…ˆ κ°€μš°μ‹œμ•ˆ 작음의 해결을 μœ„ν•΄ ꡬ쑰 ν…μ„œ μ΄λ³€μ΄μ˜ 이차 ν™•μž₯을 λ„μž…ν•˜κ³  이것을 μ΄μš©ν•œ ν˜Όν•© 방법을 μ œμ•ˆν•œλ‹€. λ‚˜μ•„κ°€ λ§μ…ˆ μ½”μ‹œ 작음 문제λ₯Ό ν•΄κ²°ν•˜κΈ° μœ„ν•΄ μš°λ¦¬λŠ” 가쀑 ν•΅ 노름을 λΉ„κ΅­μ†Œμ μΈ ν‹€μ—μ„œ μ μš©ν•˜κ³  비볼둝 ꡐ차 μŠΉμˆ˜λ²•μ„ ν†΅ν•΄μ„œ 반볡적으둜 문제λ₯Ό ν‘Όλ‹€. μ΄μ–΄μ„œ λŒ€κΈ° μ€‘μ˜ μ•ˆκ°œ λ‚€ μ˜μƒμ„ λ³΅μ›ν•˜λŠ”λ° 효과적인 색 타원면 가정에 κΈ°μ΄ˆν•˜μ—¬, μš°λ¦¬λŠ” λ¬Ό μ†μ˜ 상황에 μ•Œλ§žμ€ μ˜μƒ 볡원 방법을 μ œμ‹œν•œλ‹€. λ¬Ό μ†μ—μ„œ λΉ›μ˜ 감쇠 μ •λ„λŠ” λΉ›μ˜ 파μž₯에 따라 달라지기 λ•Œλ¬Έμ—, μš°λ¦¬λŠ” 색 타원면 가정을 μ˜μƒμ˜ 녹색과 청색 채널에 μ μš©ν•˜κ³  κ·Έλ‘œλΆ€ν„° 얻은 깊이 지도λ₯Ό 적색 μ±„λ„μ˜ 강도 지도와 ν˜Όν•©ν•˜μ—¬ κ°œμ„ λœ 깊이 지도λ₯Ό μ–»λŠ”λ‹€. 수치적 μ‹€ν—˜μ„ ν†΅ν•΄μ„œ μš°λ¦¬κ°€ μ œμ‹œν•œ 방법듀을 λ‹€λ₯Έ 방법과 λΉ„κ΅ν•˜κ³  질적인 μΈ‘λ©΄κ³Ό 평가 μ§€ν‘œμ— λ”°λ₯Έ 양적인 μΈ‘λ©΄ λͺ¨λ‘μ—μ„œ μš°μˆ˜ν•¨μ„ ν™•μΈν•œλ‹€.1 Introduction 1 1.1 Image denoising for Gaussian and Cauchy noise 2 1.2 Underwater image dehazing 5 2 Preliminaries 9 2.1 Variational models for image denoising 9 2.1.1 Data-fidelity 9 2.1.2 Regularization 11 2.1.3 Optimization algorithm 14 2.2 Methods for image dehazing in the air 15 2.2.1 Dark channel prior 16 2.2.2 Color ellipsoid prior 19 3 Image denoising for Gaussian and Cauchy noise 23 3.1 Second-order structure tensor and hybrid STV 23 3.1.1 Structure tensor total variation 24 3.1.2 Proposed model 28 3.1.3 Discretization of the model 31 3.1.4 Numerical algorithm 35 3.1.5 Experimental results 37 3.2 Weighted nuclear norm minimization for Cauchy noise 46 3.2.1 Variational models for Cauchy noise 46 3.2.2 Low rank minimization by weighted nuclear norm 52 3.2.3 Proposed method 55 3.2.4 ADMM algorithm 56 3.2.5 Numerical method and experimental results 58 4 Image restoration in underwater 71 4.1 Scientific background 72 4.2 Proposed method 73 4.2.1 Color ellipsoid prior on underwater 74 4.2.2 Background light estimation 78 4.3 Experimental results 80 5 Conclusion 87 Appendices 89Docto
    • …
    corecore