2,174 research outputs found

    DeepFactors: Real-time probabilistic dense monocular SLAM

    Get PDF
    The ability to estimate rich geometry and camera motion from monocular imagery is fundamental to future interactive robotics and augmented reality applications. Different approaches have been proposed that vary in scene geometry representation (sparse landmarks, dense maps), the consistency metric used for optimising the multi-view problem, and the use of learned priors. We present a SLAM system that unifies these methods in a probabilistic framework while still maintaining real-time performance. This is achieved through the use of a learned compact depth map representation and reformulating three different types of errors: photometric, reprojection and geometric, which we make use of within standard factor graph software. We evaluate our system on trajectory estimation and depth reconstruction on real-world sequences and present various examples of estimated dense geometry

    Fisheye Photogrammetry to Survey Narrow Spaces in Architecture and a Hypogea Environment

    Get PDF
    Nowadays, the increasing computation power of commercial grade processors has actively led to a vast spreading of image-based reconstruction software as well as its application in different disciplines. As a result, new frontiers regarding the use of photogrammetry in a vast range of investigation activities are being explored. This paper investigates the implementation of fisheye lenses in non-classical survey activities along with the related problematics. Fisheye lenses are outstanding because of their large field of view. This characteristic alone can be a game changer in reducing the amount of data required, thus speeding up the photogrammetric process when needed. Although they come at a cost, field of view (FOV), speed and manoeuvrability are key to the success of those optics as shown by two of the presented case studies: the survey of a very narrow spiral staircase located in the Duomo di Milano and the survey of a very narrow hypogea structure in Rome. A third case study, which deals with low-cost sensors, shows the metric evaluation of a commercial spherical camera equipped with fisheye lenses

    Large-Scale Mapping of Human Activity using Geo-Tagged Videos

    Full text link
    This paper is the first work to perform spatio-temporal mapping of human activity using the visual content of geo-tagged videos. We utilize a recent deep-learning based video analysis framework, termed hidden two-stream networks, to recognize a range of activities in YouTube videos. This framework is efficient and can run in real time or faster which is important for recognizing events as they occur in streaming video or for reducing latency in analyzing already captured video. This is, in turn, important for using video in smart-city applications. We perform a series of experiments to show our approach is able to accurately map activities both spatially and temporally. We also demonstrate the advantages of using the visual content over the tags/titles.Comment: Accepted at ACM SIGSPATIAL 201

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    GAGAN: Geometry-Aware Generative Adversarial Networks

    Full text link
    Deep generative models learned through adversarial training have become increasingly popular for their ability to generate naturalistic image textures. However, aside from their texture, the visual appearance of objects is significantly influenced by their shape geometry; information which is not taken into account by existing generative models. This paper introduces the Geometry-Aware Generative Adversarial Networks (GAGAN) for incorporating geometric information into the image generation process. Specifically, in GAGAN the generator samples latent variables from the probability space of a statistical shape model. By mapping the output of the generator to a canonical coordinate frame through a differentiable geometric transformation, we enforce the geometry of the objects and add an implicit connection from the prior to the generated object. Experimental results on face generation indicate that the GAGAN can generate realistic images of faces with arbitrary facial attributes such as facial expression, pose, and morphology, that are of better quality than current GAN-based methods. Our method can be used to augment any existing GAN architecture and improve the quality of the images generated

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection

    Real-time Monocular Object SLAM

    Get PDF
    We present a real-time object-based SLAM system that leverages the largest object database to date. Our approach comprises two main components: 1) a monocular SLAM algorithm that exploits object rigidity constraints to improve the map and find its real scale, and 2) a novel object recognition algorithm based on bags of binary words, which provides live detections with a database of 500 3D objects. The two components work together and benefit each other: the SLAM algorithm accumulates information from the observations of the objects, anchors object features to especial map landmarks and sets constrains on the optimization. At the same time, objects partially or fully located within the map are used as a prior to guide the recognition algorithm, achieving higher recall. We evaluate our proposal on five real environments showing improvements on the accuracy of the map and efficiency with respect to other state-of-the-art techniques

    Co-registration of three-dimensional building models with image\ud features from infrared video sequences

    Get PDF
    In the European Union (EU) countries buildings consume 40% of the energy and cause 36% of CO2 emissions.\ud The thermal information of facades and roofs are important for building inspection and energy saving. Texturing\ud the existing three-dimensional (3D) building models with infrared (IR) images enriches the model database and\ud enables analysis of energy loss of buildings.\ud The main purpose of the presented thesis is to investigate methods for automatic extraction of the IR textures for\ud roofs and facades of the existing building model. The correction of the exterior orientation parameters of the IR\ud camera mounted on mobile platform is studied. The developed method bases on a point-to-point matching of the\ud features extracted from IR images with a wire frame building model.\ud Firstly, extraction of different feature types is studied on a sample IR image; Förstner and intersection points are\ud chosen for representation of the image features. Secondly, the 3D building model is projected into each frame of\ud the IR video sequence using orientation parameters; only coarse exterior orientation parameters are known. Then\ud the automatic co-registration of a 3D building model projection into the image sequence with image features is\ud carried out. The matching of a model and extracted features is applied iteratively and exterior orientation\ud parameters are adjusted with least square adjustment. The method is tested on a dataset of dense urban area.\ud Finally, an evaluation of developed method is presented with fiv
    • …
    corecore